Newer
Older
void Decoder<In_It, Fwd_It>::wait_threads (Decoder<In_It, Fwd_It> *obj,
const Compute flags,
std::promise<std::pair<Error, uint8_t>> p)
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
std::unique_lock<std::mutex> lock (*obj->_pool_mtx);
if (obj->exiting) { // make sure we can exit
p.set_value ({Error::EXITING, 0});
break;
}
auto status = obj->get_report (flags);
if (Error::WORKING != status.first) {
p.set_value (status);
break;
}
_notify->wait (lock);
lock.unlock();
}
// delete ourselves from the waiting thread vector.
std::unique_lock<std::mutex> lock (*obj->_pool_mtx);
for (auto it = obj->pool_wait.begin(); it != obj->pool_wait.end(); ++it) {
if (it->get_id() == std::this_thread::get_id()) {
it->detach();
obj->pool_wait.erase (it);
break;
}
}
}
template <typename In_It, typename Fwd_It>
std::pair<Error, uint8_t> Decoder<In_It, Fwd_It>::get_report (
if (decoders.size() == 0)
return {Error::WORKING, 0};
if (Compute::COMPLETE == (flags & Compute::COMPLETE) ||
Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
uint16_t reportable = 0;
uint16_t next_expected = static_cast<uint16_t> (pool_last_reported + 1);
std::unique_lock<std::mutex> dec_lock (_mtx);
auto it = decoders.lower_bound (static_cast<uint8_t> (next_expected));
// get last reportable block
for (; it != decoders.end(); ++it) {
auto id = it->first;
if (id != next_expected)
break; // not consecutive
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr.");
break;
}
if (!ptr->ready()) {
if (ptr->is_stopped())
return {Error::EXITING, 0};
if (ptr->end_of_input && ptr->threads() == 0)
return {Error::NEED_DATA, 0};
break; // still working
}
if (reportable > 0) {
pool_last_reported += reportable;
if (Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
return {Error::NONE, static_cast<uint8_t>(pool_last_reported)};
} else {
// complete
if (pool_last_reported == _blocks - 1)
return {Error::NONE,
}
}
} else if (Compute::PARTIAL_ANY == (flags & Compute::PARTIAL_ANY)) {
// FIXME: locking might not be necessary. map emplace/erase do not
// invalidate other pointers.
auto undecodable = decoders.end();
std::unique_lock<std::mutex> dec_lock (_mtx);
RQ_UNUSED(dec_lock);
for (auto it = decoders.begin(); it != decoders.end(); ++it) {
if (!it->second.reported) {
auto ptr = it->second.dec;
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr");
break;
}
if (ptr->ready()) {
it->second.reported = true;
return {Error::NONE, it->first};
}
if (ptr->is_stopped())
return {Error::EXITING, 0};
// first return all decodable blocks
// then return the ones we can not decode.
if (ptr->end_of_input && ptr->threads() == 0)
undecodable = it;
if (undecodable != decoders.end()) {
undecodable->second.reported = true;
return {Error::NEED_DATA, undecodable->first};
}
}
// can be reached if computing thread was stopped
return {Error::WORKING, 0};
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::decode_symbol (Fwd_It &start, const Fwd_It end,
const uint16_t esi,
const uint8_t sbn)
{
if (!operator bool() || sbn > blocks() || esi > symbols (sbn))
return 0;
std::shared_ptr<RaptorQ__v1::Impl::Raw_Decoder<In_It>> dec_ptr = nullptr;
std::unique_lock<std::mutex> lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return 0; // did not receiveany data yet.
if (use_pool) {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready())
return 0; // did not receive enough data, or could not decode yet.
} else {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready()) {
if (!dec_ptr->can_decode())
return 0;
RaptorQ__v1::Work_State keep_working =
RaptorQ__v1::Work_State::KEEP_WORKING;
dec_ptr->decode (&keep_working);
if (!dec_ptr->ready())
return 0;
}
}
// decoder has decoded the block
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks, _alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const uint64_t diff = all_blocks - _size;
max_bytes -= static_cast<size_t>(diff);
}
// find the end:
auto real_end = start;
size_t fwd_iter_for_symbol = symbol_size() /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// be sure that 'end' points AT MAX to the end of the symbol
if (std::is_same<typename std::iterator_traits<Fwd_It>::iterator_category,
std::random_access_iterator_tag>::value) {
real_end += fwd_iter_for_symbol;
if (real_end > end)
real_end = end;
} else {
// sory, fwd_iterators do not have comparison operators :(
while (real_end != end && fwd_iter_for_symbol != 0)
++real_end;
}
return de_interleaving (start, end, max_bytes, 0, esi);
}
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::decode_bytes (Fwd_It &start, const Fwd_It end,
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
// Decode from the beginning, up untill we can.
// return number of BYTES written, starting at "start + skip" bytes
//
// in case the last iterator is only half written, "start" will
// point to the half-written iterator.
uint64_t written = 0;
uint8_t new_skip = skip;
for (uint8_t sbn = 0; sbn < blocks(); ++sbn) {
std::unique_lock<std::mutex> block_lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return written;
auto dec_ptr = it->second.dec;
block_lock.unlock();
if (!dec_ptr->ready()) {
if (!use_pool && dec_ptr->can_decode()) {
RaptorQ__v1::Work_State state =
RaptorQ__v1::Work_State::KEEP_WORKING;
auto ret = dec_ptr->decode (&state);
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
return written;
}
} else {
return written;
}
}
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks, _alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const size_t diff = static_cast<size_t> (all_blocks - _size);
max_bytes -= diff;
}
auto tmp_start = start;
uint64_t bytes_written = de_interleaving (tmp_start, end, max_bytes,
new_skip);
written += bytes_written;
uint64_t bytes_and_skip = new_skip + bytes_written;
new_skip = bytes_and_skip %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
if (bytes_written == 0)
return written;
//new_skip = block_size (sbn) %
// sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// if we ended decoding in the middle of a Fwd_It, do not advance
// start too much, or we will end up having additional zeros.
if (new_skip == 0) {
start = tmp_start;
} else {
uint64_t it_written = bytes_and_skip /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// RaptorQ handles at most 881GB per rfc, so
// casting uint64 to int64 is safe
// we can not do "--start" since it's a forward iterator
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#pragma clang diagnostic ignored "-Wsign-conversion"
start += std::max (static_cast<uint64_t>(0), it_written - 1);
#pragma clang diagnostic pop
}
}
return written;
size_t Decoder<In_It, Fwd_It>::decode_block_bytes (Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
return 0;
std::shared_ptr<RaptorQ__v1::Impl::Raw_Decoder<In_It>> dec_ptr = nullptr;
std::unique_lock<std::mutex> lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return 0; // did not receiveany data yet.
if (use_pool) {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready())
return 0; // did not receive enough data, or could not decode yet.
} else {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready()) {
if (!dec_ptr->can_decode())
return 0;
RaptorQ__v1::Work_State keep_working =
RaptorQ__v1::Work_State::KEEP_WORKING;
dec_ptr->decode (&keep_working);
if (!dec_ptr->ready())
return 0;
}
}
// decoder has decoded the block
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks, _alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const uint64_t diff = all_blocks - _size;
max_bytes -= static_cast<size_t>(diff);
}
return de_interleaving (start, end, max_bytes, skip);
}
template <typename In_It, typename Fwd_It>
std::pair<uint64_t, uint8_t> Decoder<In_It, Fwd_It>::decode_aligned (
Fwd_It &start,
const Fwd_It end,
const uint8_t skip)
const uint64_t bytes = decode_bytes (start, end, skip);
const uint64_t skip_and_bytes = skip + bytes;
const uint64_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
}
template <typename In_It, typename Fwd_It>
std::pair<size_t, uint8_t> Decoder<In_It, Fwd_It>::decode_block_aligned (
Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
const size_t bytes = decode_block_bytes (start, end, skip, sbn);
const size_t skip_and_bytes = skip + bytes;
const size_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::bytes() const
template <typename In_It, typename Fwd_It>
uint8_t Decoder<In_It, Fwd_It>::blocks() const
return static_cast<uint8_t> (part.num (0) + part.num (1));
template <typename In_It, typename Fwd_It>
uint32_t Decoder<In_It, Fwd_It>::block_size (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0) * _symbol_size;
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1) * _symbol_size;
}
return 0;
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbol_size() const
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbols (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0);
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1);
}
return 0;