Newer
Older
}
template <typename In_It, typename Fwd_It>
std::pair<Error, uint8_t> Decoder<In_It, Fwd_It>::get_report (
if (decoders.size() == 0)
return {Error::WORKING, 0};
if (Compute::COMPLETE == (flags & Compute::COMPLETE) ||
Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
uint16_t reportable = 0;
uint16_t next_expected = static_cast<uint16_t> (pool_last_reported + 1);
std::unique_lock<std::mutex> dec_lock (_mtx);
auto it = decoders.lower_bound (static_cast<uint8_t> (next_expected));
// get last reportable block
for (; it != decoders.end(); ++it) {
auto id = it->first;
if (id != next_expected)
break; // not consecutive
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr.");
break;
}
if (!ptr->ready()) {
if (ptr->is_stopped())
return {Error::EXITING, 0};
if (ptr->end_of_input && ptr->threads() == 0)
return {Error::NEED_DATA, 0};
break; // still working
}
if (reportable > 0) {
pool_last_reported += reportable;
if (Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
return {Error::NONE, static_cast<uint8_t>(pool_last_reported)};
} else {
// complete
if (pool_last_reported == _blocks - 1)
return {Error::NONE,
}
}
} else if (Compute::PARTIAL_ANY == (flags & Compute::PARTIAL_ANY)) {
// FIXME: locking might not be necessary. map emplace/erase do not
// invalidate other pointers.
auto undecodable = decoders.end();
std::unique_lock<std::mutex> dec_lock (_mtx);
RQ_UNUSED(dec_lock);
for (auto it = decoders.begin(); it != decoders.end(); ++it) {
if (!it->second.reported) {
auto ptr = it->second.dec;
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr");
break;
}
if (ptr->ready()) {
it->second.reported = true;
return {Error::NONE, it->first};
}
if (ptr->is_stopped())
return {Error::EXITING, 0};
// first return all decodable blocks
// then return the ones we can not decode.
if (ptr->end_of_input && ptr->threads() == 0)
undecodable = it;
if (undecodable != decoders.end()) {
undecodable->second.reported = true;
return {Error::NEED_DATA, undecodable->first};
}
}
// can be reached if computing thread was stopped
return {Error::WORKING, 0};
}
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::decode_bytes (Fwd_It &start, const Fwd_It end,
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
// Decode from the beginning, up untill we can.
// return number of BYTES written, starting at "start + skip" bytes
//
// in case the last iterator is only half written, "start" will
// point to the half-written iterator.
uint64_t written = 0;
uint8_t new_skip = skip;
for (uint8_t sbn = 0; sbn < blocks(); ++sbn) {
std::unique_lock<std::mutex> block_lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return written;
auto dec_ptr = it->second.dec;
block_lock.unlock();
if (!dec_ptr->ready()) {
if (!use_pool && dec_ptr->can_decode()) {
RaptorQ__v1::Work_State state =
RaptorQ__v1::Work_State::KEEP_WORKING;
auto ret = dec_ptr->decode (&state);
if (RaptorQ__v1::Impl::Raw_Decoder<In_It>::
Decoder_Result::DECODED != ret) {
return written;
}
} else {
return written;
}
}
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks, _alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const size_t diff = static_cast<size_t> (all_blocks - _size);
max_bytes -= diff;
}
auto tmp_start = start;
uint64_t bytes_written = de_interleaving (tmp_start, end, max_bytes,
new_skip);
written += bytes_written;
uint64_t bytes_and_skip = new_skip + bytes_written;
new_skip = bytes_and_skip %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
if (bytes_written == 0)
return written;
//new_skip = block_size (sbn) %
// sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// if we ended decoding in the middle of a Fwd_It, do not advance
// start too much, or we will end up having additional zeros.
if (new_skip == 0) {
start = tmp_start;
} else {
uint64_t it_written = bytes_and_skip /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// RaptorQ handles at most 881GB per rfc, so
// casting uint64 to int64 is safe
// we can not do "--start" since it's a forward iterator
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#pragma clang diagnostic ignored "-Wsign-conversion"
start += std::max (static_cast<uint64_t>(0), it_written - 1);
#pragma clang diagnostic pop
}
}
return written;
size_t Decoder<In_It, Fwd_It>::decode_block_bytes (Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
if (sbn >= _blocks)
return 0;
std::shared_ptr<RaptorQ__v1::Impl::Raw_Decoder<In_It>> dec_ptr = nullptr;
std::unique_lock<std::mutex> lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return 0; // did not receiveany data yet.
if (use_pool) {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready())
return 0; // did not receive enough data, or could not decode yet.
} else {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready()) {
if (!dec_ptr->can_decode())
return 0;
RaptorQ__v1::Work_State keep_working =
RaptorQ__v1::Work_State::KEEP_WORKING;
dec_ptr->decode (&keep_working);
if (!dec_ptr->ready())
return 0;
}
}
// decoder has decoded the block
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks, _alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const uint64_t diff = all_blocks - _size;
max_bytes -= static_cast<size_t>(diff);
}
return de_interleaving (start, end, max_bytes, skip);
}
template <typename In_It, typename Fwd_It>
std::pair<uint64_t, uint8_t> Decoder<In_It, Fwd_It>::decode_aligned (
Fwd_It &start,
const Fwd_It end,
const uint8_t skip)
const uint64_t bytes = decode_bytes (start, end, skip);
const uint64_t skip_and_bytes = skip + bytes;
const uint64_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
}
template <typename In_It, typename Fwd_It>
std::pair<size_t, uint8_t> Decoder<In_It, Fwd_It>::decode_block_aligned (
Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
const size_t bytes = decode_block_bytes (start, end, skip, sbn);
const size_t skip_and_bytes = skip + bytes;
const size_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::bytes() const
template <typename In_It, typename Fwd_It>
uint8_t Decoder<In_It, Fwd_It>::blocks() const
return static_cast<uint8_t> (part.num (0) + part.num (1));
template <typename In_It, typename Fwd_It>
uint32_t Decoder<In_It, Fwd_It>::block_size (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0) * _symbol_size;
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1) * _symbol_size;
}
return 0;
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbol_size() const
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbols (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0);
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1);
}
return 0;