Newer
Older
block_bytes -= static_cast<size_t>(diff);
ret = de_interleaving.symbols_to_bytes (block_bytes,
std::move(symbol_bitmask));
dec_lock.unlock();
pool_lock.unlock();
_pool_notify->notify_all();
return ret;
template <typename In_It, typename Fwd_It>
Decoder<In_It, Fwd_It>::Block_Work::~Block_Work()
{
// have we been called before the computation finished?
auto locked_dec = work.lock();
auto locked_notify = notify.lock();
auto locked_mtx = lock.lock();
std::unique_lock<std::mutex> p_lock (*locked_mtx);
RQ_UNUSED(p_lock);
template <typename In_It, typename Fwd_It>
Work_Exit_Status Decoder<In_It, Fwd_It>::Block_Work::do_work (
auto locked_notify = notify.lock();
auto locked_mtx = lock.lock();
std::unique_lock<std::mutex> p_lock (*locked_mtx, std::defer_lock);
p_lock.lock();
if (locked_dec->can_decode()) {
// check again to avoid race between threads
return Work_Exit_Status::REQUEUE;
} else {
locked_dec->drop_concurrent();
if (locked_dec->end_of_input && locked_dec->threads() == 0)
locked_notify->notify_all();
p_lock.unlock();
work.reset();
return Work_Exit_Status::DONE;
}
if (locked_dec->ready()) { // did an other thread stop us?
locked_dec->drop_concurrent();
work.reset();
return Work_Exit_Status::DONE;
return Work_Exit_Status::REQUEUE;
}
}
return Work_Exit_Status::DONE;
std::future<std::pair<Error, uint8_t>> Decoder<In_It, Fwd_It>::compute (
using ret_t = std::pair<Error, uint8_t>;
std::promise<ret_t> p;
bool error = !operator bool(); // test correct class initialization
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
// need some flags
if (flags == Compute::NONE)
error = true;
// flag incompatibilities
if (Compute::NONE != (flags & Compute::PARTIAL_FROM_BEGINNING) &&
(Compute::NONE != (flags & (Compute::PARTIAL_ANY |
Compute::COMPLETE |
Compute::NO_POOL)))) {
error = true;
} else if (Compute::NONE != (flags & Compute::PARTIAL_ANY) &&
(Compute::NONE != (flags & (Compute::PARTIAL_FROM_BEGINNING |
Compute::COMPLETE |
Compute::NO_POOL)))) {
error = true;
} else if (Compute::NONE != (flags & Compute::COMPLETE) &&
Compute::NONE != (flags &(Compute::PARTIAL_FROM_BEGINNING |
Compute::PARTIAL_ANY |
Compute::NO_POOL))) {
error = true;
}
if (Compute::NONE != (flags & Compute::NO_POOL)) {
std::unique_lock<std::mutex> lock (_mtx);
RQ_UNUSED(lock);
if (decoders.size() != 0) {
// You can only say you won't use the pool *before* you start
// decoding something!
error = true;
} else {
use_pool = false;
p.set_value ({Error::NONE, 0});
return p.get_future();
}
}
if (error) {
p.set_value ({Error::WRONG_INPUT, 0});
return p.get_future();
}
// do not add work to the pool to save up memory.
// let "add_symbol craete the Decoders as needed.
// spawn thread waiting for other thread exit.
// this way we can set_value to the future when needed.
auto future = p.get_future();
if (Compute::NONE != (flags & Compute::NO_BACKGROUND)) {
wait_threads (this, flags, std::move(p));
} else {
std::unique_lock<std::mutex> pool_wait_lock (*_pool_mtx);
RQ_UNUSED(pool_wait_lock);
pool_wait.emplace_back (wait_threads, this, flags, std::move(p));
}
return future;
void Decoder<In_It, Fwd_It>::wait_threads (Decoder<In_It, Fwd_It> *obj,
const Compute flags,
std::promise<std::pair<Error, uint8_t>> p)
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
std::unique_lock<std::mutex> lock (*obj->_pool_mtx);
if (obj->exiting) { // make sure we can exit
p.set_value ({Error::EXITING, 0});
break;
}
auto status = obj->get_report (flags);
if (Error::WORKING != status.first) {
p.set_value (status);
break;
}
_notify->wait (lock);
lock.unlock();
}
// delete ourselves from the waiting thread vector.
std::unique_lock<std::mutex> lock (*obj->_pool_mtx);
for (auto it = obj->pool_wait.begin(); it != obj->pool_wait.end(); ++it) {
if (it->get_id() == std::this_thread::get_id()) {
it->detach();
obj->pool_wait.erase (it);
break;
}
}
}
template <typename In_It, typename Fwd_It>
std::pair<Error, uint8_t> Decoder<In_It, Fwd_It>::get_report (
if (decoders.size() == 0)
return {Error::WORKING, 0};
if (Compute::COMPLETE == (flags & Compute::COMPLETE) ||
Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
uint16_t reportable = 0;
uint16_t next_expected = static_cast<uint16_t> (pool_last_reported + 1);
std::unique_lock<std::mutex> dec_lock (_mtx);
auto it = decoders.lower_bound (static_cast<uint8_t> (next_expected));
// get last reportable block
for (; it != decoders.end(); ++it) {
auto id = it->first;
if (id != next_expected)
break; // not consecutive
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr.");
break;
}
if (!ptr->ready()) {
if (ptr->is_stopped())
return {Error::EXITING, 0};
if (ptr->end_of_input && ptr->threads() == 0)
return {Error::NEED_DATA, 0};
break; // still working
}
if (reportable > 0) {
pool_last_reported += reportable;
if (Compute::PARTIAL_FROM_BEGINNING ==
(flags & Compute::PARTIAL_FROM_BEGINNING)) {
return {Error::NONE, static_cast<uint8_t>(pool_last_reported)};
} else {
// complete
if (pool_last_reported == _blocks - 1)
return {Error::NONE,
}
}
} else if (Compute::PARTIAL_ANY == (flags & Compute::PARTIAL_ANY)) {
// invalidate other pointers.
auto undecodable = decoders.end();
std::unique_lock<std::mutex> dec_lock (_mtx);
RQ_UNUSED(dec_lock);
for (auto it = decoders.begin(); it != decoders.end(); ++it) {
if (!it->second.reported) {
auto ptr = it->second.dec;
if (ptr == nullptr) {
assert(false && "RFC6330: decoder should never be nullptr");
break;
}
if (ptr->ready()) {
it->second.reported = true;
return {Error::NONE, it->first};
}
if (ptr->is_stopped())
return {Error::EXITING, 0};
// first return all decodable blocks
// then return the ones we can not decode.
if (ptr->end_of_input && ptr->threads() == 0)
undecodable = it;
if (undecodable != decoders.end()) {
undecodable->second.reported = true;
return {Error::NEED_DATA, undecodable->first};
}
}
// can be reached if computing thread was stopped
return {Error::WORKING, 0};
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::decode_symbol (Fwd_It &start, const Fwd_It end,
const uint16_t esi,
const uint8_t sbn)
{
if (!operator bool() || sbn > blocks() || esi > symbols (sbn))
return 0;
std::shared_ptr<RaptorQ__v1::Impl::Raw_Decoder<In_It>> dec_ptr = nullptr;
std::unique_lock<std::mutex> lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return 0; // did not receiveany data yet.
if (use_pool) {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready())
return 0; // did not receive enough data, or could not decode yet.
} else {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready()) {
if (!dec_ptr->can_decode())
return 0;
RaptorQ__v1::Work_State keep_working =
RaptorQ__v1::Work_State::KEEP_WORKING;
dec_ptr->decode (&keep_working);
if (!dec_ptr->ready())
return 0;
}
}
// decoder has decoded the block
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks,
symbols (sbn),
_alignment);
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const uint64_t diff = all_blocks - _size;
max_bytes -= static_cast<size_t>(diff);
}
// find the end:
auto real_end = start;
size_t fwd_iter_for_symbol = symbol_size() /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// be sure that 'end' points AT MAX to the end of the symbol
if (std::is_same<typename std::iterator_traits<Fwd_It>::iterator_category,
std::random_access_iterator_tag>::value) {
real_end += fwd_iter_for_symbol;
if (real_end > end)
real_end = end;
} else {
// sory, fwd_iterators do not have comparison operators :(
while (real_end != end && fwd_iter_for_symbol != 0)
++real_end;
}
return de_interleaving (start, end, max_bytes, 0, esi);
}
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::decode_bytes (Fwd_It &start, const Fwd_It end,
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
// Decode from the beginning, up untill we can.
// return number of BYTES written, starting at "start + skip" bytes
//
// in case the last iterator is only half written, "start" will
// point to the half-written iterator.
uint64_t written = 0;
uint8_t new_skip = skip;
for (uint8_t sbn = 0; sbn < blocks(); ++sbn) {
std::unique_lock<std::mutex> block_lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
return written;
auto dec_ptr = it->second.dec;
block_lock.unlock();
if (!dec_ptr->ready()) {
if (!use_pool && dec_ptr->can_decode()) {
RaptorQ__v1::Work_State state =
RaptorQ__v1::Work_State::KEEP_WORKING;
auto ret = dec_ptr->decode (&state);
return written;
}
} else {
return written;
}
}
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks,
symbols (sbn),
_alignment);
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const size_t diff = static_cast<size_t> (all_blocks - _size);
max_bytes -= diff;
}
auto tmp_start = start;
uint64_t bytes_written = de_interleaving (tmp_start, end, max_bytes,
new_skip);
written += bytes_written;
uint64_t bytes_and_skip = new_skip + bytes_written;
new_skip = bytes_and_skip %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
if (bytes_written == 0)
return written;
//new_skip = block_size (sbn) %
// sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// if we ended decoding in the middle of a Fwd_It, do not advance
// start too much, or we will end up having additional zeros.
if (new_skip == 0) {
start = tmp_start;
} else {
uint64_t it_written = bytes_and_skip /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
// RaptorQ handles at most 881GB per rfc, so
// casting uint64 to int64 is safe
// we can not do "--start" since it's a forward iterator
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#pragma clang diagnostic ignored "-Wsign-conversion"
start += std::max (static_cast<uint64_t>(0), it_written - 1);
#pragma clang diagnostic pop
}
}
return written;
size_t Decoder<In_It, Fwd_It>::decode_block_bytes (Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
return 0;
std::shared_ptr<RaptorQ__v1::Impl::Raw_Decoder<In_It>> dec_ptr = nullptr;
std::unique_lock<std::mutex> lock (_mtx);
auto it = decoders.find (sbn);
if (it == decoders.end())
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
if (use_pool) {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready())
return 0; // did not receive enough data, or could not decode yet.
} else {
dec_ptr = it->second.dec;
lock.unlock();
if (!dec_ptr->ready()) {
if (!dec_ptr->can_decode())
return 0;
RaptorQ__v1::Work_State keep_working =
RaptorQ__v1::Work_State::KEEP_WORKING;
dec_ptr->decode (&keep_working);
if (!dec_ptr->ready())
return 0;
}
}
// decoder has decoded the block
Impl::De_Interleaver<Fwd_It> de_interleaving (dec_ptr->get_symbols(),
_sub_blocks,
symbols (sbn),
_alignment);
size_t max_bytes = block_size (sbn);
if (sbn == (blocks() - 1)) {
// size of the data (_size) is different from the sum of the size of
// all blocks. get the real size, so we do not write more.
// we obviously need to consider this only for the last block.
uint64_t all_blocks = 0;
for (uint8_t id = 0; id < blocks(); ++id)
all_blocks += block_size (sbn);
const uint64_t diff = all_blocks - _size;
max_bytes -= static_cast<size_t>(diff);
}
return de_interleaving (start, end, max_bytes, skip);
}
template <typename In_It, typename Fwd_It>
Decoder_written Decoder<In_It, Fwd_It>::decode_aligned (Fwd_It &start,
const Fwd_It end,
const uint8_t skip)
const uint64_t bytes = decode_bytes (start, end, skip);
const uint64_t skip_and_bytes = skip + bytes;
const uint64_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
}
template <typename In_It, typename Fwd_It>
Decoder_written Decoder<In_It, Fwd_It>::decode_block_aligned (
Fwd_It &start,
const Fwd_It end,
const uint8_t skip,
const uint8_t sbn)
const size_t bytes = decode_block_bytes (start, end, skip, sbn);
const size_t skip_and_bytes = skip + bytes;
const size_t iterators = skip_and_bytes /
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
const uint8_t new_skip = skip_and_bytes %
sizeof(typename std::iterator_traits<Fwd_It>::value_type);
return {iterators, new_skip};
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
template <typename In_It, typename Fwd_It>
uint8_t Decoder<In_It, Fwd_It>::blocks_ready()
{
uint8_t blocks_ready = 0;
for (uint8_t sbn = 0; sbn < blocks(); ++sbn) {
if (is_block_ready (sbn))
++blocks_ready;
}
return blocks_ready;
}
template <typename In_It, typename Fwd_It>
bool Decoder<In_It, Fwd_It>::is_ready()
{ return blocks_ready() == blocks(); }
template <typename In_It, typename Fwd_It>
bool Decoder<In_It, Fwd_It>::is_block_ready (const uint8_t block)
{
std::unique_lock<std::mutex> block_lock (_mtx);
auto it = decoders.find (block);
if (it == decoders.end())
return false;
auto dec_ptr = it->second.dec;
block_lock.unlock();
if (dec_ptr->ready())
return true;
return false;
}
template <typename In_It, typename Fwd_It>
uint64_t Decoder<In_It, Fwd_It>::bytes() const
template <typename In_It, typename Fwd_It>
uint8_t Decoder<In_It, Fwd_It>::blocks() const
return static_cast<uint8_t> (part.num (0) + part.num (1));
template <typename In_It, typename Fwd_It>
uint32_t Decoder<In_It, Fwd_It>::block_size (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0) * _symbol_size;
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1) * _symbol_size;
}
return 0;
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbol_size() const
template <typename In_It, typename Fwd_It>
uint16_t Decoder<In_It, Fwd_It>::symbols (const uint8_t sbn) const
if (sbn < part.num (0)) {
return part.size (0);
} else if (sbn - part.num (0) < part.num (1)) {
return part.size (1);
}
return 0;
template <typename Rnd_It, typename Fwd_It>
Block_Size Decoder<Rnd_It, Fwd_It>::extended_symbols (const uint8_t sbn) const
{
const uint16_t symbols = this->symbols (sbn);
if (symbols == 0)
return static_cast<Block_Size> (0);
uint16_t idx;
for (idx = 0; idx < (*RFC6330__v1::blocks).size(); ++idx) {
if (static_cast<uint16_t> ((*RFC6330__v1::blocks)[idx]) >= symbols)
break;
}
// check that the user did not try some cast trickery,
// and maximum size is ssize_t::max. But ssize_t is not standard,
// so we search the maximum ourselves.
if (idx == (*RFC6330__v1::blocks).size())
return static_cast<Block_Size> (0);
return (*RFC6330__v1::blocks)[idx];
}