Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
* Copyright (c) 2015, Luca Fulchir<luca@fulchir.it>, All rights reserved.
*
* This file is part of "libRaptorQ".
*
* libRaptorQ is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* libRaptorQ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and a copy of the GNU Lesser General Public License
* along with libRaptorQ. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Graph.hpp"
#include "multiplication.hpp"
#include "Precode_Matrix.hpp"
#include "Rand.hpp"
///////////////////
//
// Precode_Matrix
//
///////////////////
///
/// These methods are used to solve the system A * C = D, where we have
/// A and D. By doing this, we generate the intermediate symbols.
///
namespace RaptorQ {
namespace Impl {
DenseMtx Precode_Matrix::intermediate (DenseMtx &D)
{
// rfc 6330, pg 32
// "c" and "d" are used to track row and columns exchange.
// since Eigen should track row exchange without actually swapping
// the data, we can call DenseMtx.row.swap without more overhead
// than actually having "d". so we're left only with "c",
// which is needed 'cause D does not have _params.L columns.
std::vector<uint16_t> c;
c.clear();
c.reserve (_params.L);
DenseMtx C, X = A;
bool success;
uint16_t i, u;
for (i = 0; i < _params.L; ++i)
c.emplace_back (i);
std::tie (success, i, u) = decode_phase1 (X, D, c);
if (!success)
return C;
success = decode_phase2 (D, i, u);
if (!success)
return C;
// A now should be considered as being LxL from now
decode_phase3 (X, D, i);
X = DenseMtx (); // free some memory, X is not needed anymore.
decode_phase4 (D, i, u);
decode_phase5 (D, i);
// A now must be an LxL identity matrix: check it.
// CHECK DISABLED: phase4 does not modify A, as it's never readed
// again. So the Matrix is *not* an identity anymore.
//auto id_A = A.block (0, 0, _params.L, _params.L);
//for (uint16_t row = 0; row < id_A.rows(); ++row) {
// for (uint16_t col = 0; col < id_A.cols(); ++col) {
// if (static_cast<uint8_t> (id_A (row, col)) != (row == col ? 1 : 0))
// return C;
// }
//}
C = DenseMtx (D.rows(), D.cols());
for (i = 0; i < _params.L; ++i)
C.row (c[i]) = D.row (i);
return C;
}
// Used in decoding
DenseMtx Precode_Matrix::intermediate (DenseMtx &D, const Bitmask &mask,
const std::vector<uint32_t> &repair_esi)
{
decode_phase0 (mask, repair_esi);
DenseMtx C = intermediate (D);
if (C.rows() == 0) {
// error somewhere
}
DenseMtx missing = DenseMtx (mask.get_holes(), D.cols());
uint16_t holes = mask.get_holes();
uint16_t row = 0;
for (uint16_t hole = 0; hole < mask._max_nonrepair && holes > 0; ++hole) {
if (mask.exists (hole))
continue;
DenseMtx ret = encode (C, hole);
missing.row (row) = ret.row(0);
++row;
}
void Precode_Matrix::decode_phase0 (const Bitmask &mask,
const std::vector<uint32_t> &repair_esi)
{
// D was built as follows:
// - non-repair esi in their place
// - for each hole in non-repair esi, put the *first available* repair esi
// in its place
// - compact remaining repair esis
// substitute missing symbols in A with appropriate repair line.
// we substituted some symbols with repair ones (rfc 6330, phase1, pg35),
// so we need to fix the corresponding rows in A, to say that a
// repair symbol comes from a set of other symbols.
const size_t padding = _params.K_padded - mask._max_nonrepair;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
uint16_t holes = mask.get_holes();
auto r_esi = repair_esi.begin();
for (uint16_t hole_from = 0; hole_from < _params.L && holes > 0;
++hole_from) {
if (mask.exists (hole_from))
continue;
// now hole_from is the esi hole, and hole_to is our repair sym.
// put the repair dependancy in the hole row
auto depends = _params.get_idxs (static_cast<uint16_t> (
*r_esi + padding));
++r_esi;
// erease the line, mark the dependencies of the repair symbol.
const uint16_t row = hole_from + _params.H + _params.S;
for (uint16_t col = 0; col < A.cols(); ++col) {
A (row, col) = 0;
}
for (auto isi: depends) {
A (row, isi) = 1;
}
--holes;
}
// we put the repair symbols in the right places,
// but we still need to do the same modifications to A also for repair
// symbols. And those have been compacted.
for (uint16_t rep_row = static_cast<uint16_t> (A.rows() - _repair_overhead);
rep_row < A.rows(); ++rep_row) {
auto depends = _params.get_idxs (static_cast<uint16_t> (
*r_esi + padding));
++r_esi;
// erease the line, mark the dependencies of the repair symbol.
for (uint16_t col = 0; col < A.cols(); ++col) {
A (rep_row, col) = 0;
}
for (auto isi: depends) {
A (rep_row, isi) = 1;
}
}
}
std::tuple<bool, uint16_t, uint16_t>
Precode_Matrix::decode_phase1 (DenseMtx &X, DenseMtx &D,
std::vector<uint16_t> &c)
{
//rfc6330, page 33
std::vector<std::pair<bool, size_t>> tracking; // is_hdpc, row_degree
// optimization: r_rows tracks the rows that can be chosen, and if the row
// is added to the graph, track also the id of one of the nodes with "1",
// so that it will be easy to verify it. The row represents an edge
// between nodes (1) of a maximum component (see rfc 6330, pg 33-34)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
std::vector<std::pair<uint16_t, uint16_t>> r_rows;
tracking.reserve (static_cast<size_t> (A.rows()));
uint16_t i = 0;
uint16_t u = _params.P;
auto V_tmp = A.block (0, 0, A.rows(), A.cols() - u);
// track hdpc rows and original degree of each row
for (uint16_t row = 0; row < V_tmp.rows(); ++row) {
size_t original_degree = 0;
for (uint16_t col = 0; col < V_tmp.cols(); ++col)
original_degree += static_cast<uint8_t> (V_tmp (row, col));
bool is_hdpc = (row >= _params.S && row < (_params.S + _params.H));
tracking.emplace_back (is_hdpc, original_degree);;
}
while (i + u < _params.L) {
auto V = A.block (i, i, A.rows() - i, (A.cols() - i) - u);
uint16_t chosen = static_cast<uint16_t> (V.rows());
// search for minium "r" (number of nonzero elements in row)
uint16_t non_zero = static_cast<uint16_t> (V.cols()) + 1;
bool only_two_ones = false;
r_rows.clear();
Graph G = Graph (static_cast<uint16_t> (V.cols()));
// build graph, get minimum non_zero and track rows that
// will be needed later
for (uint16_t row = 0; row < V.rows(); ++row) {
uint16_t non_zero_tmp = 0;
// if the row is NOT HDPC and has two ones,
// it represents an edge in a graph between the two columns with "1"
uint16_t ones = 0;
std::array<uint16_t, 2> ones_idx = {{0, 0}};
bool next_row = false; // true => non_zero_tmp > zero_tmp
for (uint16_t col = 0; col < V.cols(); ++col) {
if (static_cast<uint8_t> (V (row, col)) != 0) {
if (++non_zero_tmp > non_zero) {
next_row = true;
break;
}
}
if (static_cast<uint8_t> (V (row, col)) == 1) {
// count the ones and update ones_idx at the same time
if (++ones <= 2)
ones_idx[ones - 1] = col;
}
}
if (next_row || non_zero_tmp == 0)
continue;
// now non_zero >= non_zero_tmp, and both > 0
// rationale & optimization, rfc 6330 pg 34
// we need to track the rows that have the least number "r"
// of non-zero elements.
// if r == 2 and even just one row has the two elements to "1",
// then we need to track only the rows with "1" in the two
// non-zero elements.
if (non_zero == non_zero_tmp) {
// do not add if "only_two_ones && ones != 2"
if (!only_two_ones || ones == 2)
r_rows.emplace_back (row, ones_idx[0]);
} else {
// non_zero > non_zero_tmp)
non_zero = non_zero_tmp;
r_rows.clear();
r_rows.emplace_back (row, ones_idx[0]);
}
if (ones == 2) {
// track the maximum component in the graph
if (non_zero == 2) {
if (!tracking[row].first) // if not HDPC row
G.connect (ones_idx[0], ones_idx[1]);
if (!only_two_ones) {
// must keep only rows with two ones,
// so delete the other ones.
only_two_ones = true;
r_rows.clear();
r_rows.emplace_back (row, ones_idx[0]);
}
}
}
}
if (non_zero == V.cols() + 1)
return std::make_tuple (false, 0, 0); // failure
// search for r.
if (non_zero != 2) {
// search for row with minimum original degree.
// Precedence to non-hdpc
uint16_t min_row = static_cast<uint16_t> (V.rows());
uint16_t min_row_hdpc = min_row;
size_t min_degree = ~(static_cast<size_t> (0)); // max possible
size_t min_degree_hdpc = min_degree;
for (auto row_pair : r_rows) {
uint16_t row = row_pair.first;
if (tracking[row + i].first) {
// HDPC
if (tracking[row + i].second < min_degree_hdpc) {
min_degree_hdpc = tracking[row + i].second;
min_row_hdpc = row;
}
} else {
// NON-HDPC
if (tracking[row + i].second < min_degree) {
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
min_row = row;
}
}
}
if (min_row != V.rows()) {
chosen = min_row;
} else {
chosen = min_row_hdpc;
}
} else {
// non_zero == 2 => graph, else any r
if (only_two_ones) {
for (auto id : r_rows) {
if (G.is_max (id.second)) {
chosen = id.first;
break;
}
}
}
if (chosen == V.rows()) {
chosen = r_rows[0].first;
}
} // done choosing
// swap chosen row and first V row in A (not just in V)
if (chosen != 0) {
A.row (i).swap (A.row (chosen + i));
X.row (i).swap (X.row (chosen + i));
D.row (i).swap (D.row (chosen + i));
std::swap (tracking[i], tracking[chosen + i]);
}
// column swap in A. looking at the first V row,
// the first column must be nonzero, and the other non-zero must be
// put to the last columns of V.
if (static_cast<uint8_t> (V (0, 0)) == 0) {
uint16_t idx = 1;
for (; idx < V.cols(); ++idx) {
if (static_cast<uint8_t> (V (0, idx)) != 0)
break;
}
A.col (i).swap (A.col (i + idx));
X.col (i).swap (X.col (i + idx));
std::swap (c[i], c[i + idx]); // rfc6330, pg32
}
uint16_t col = static_cast<uint16_t> (V.cols()) - 1;
uint16_t swap = 1; // at most we swapped V(0,0)
// put all the non-zero cols to the last columns.
for (; col > V.cols() - non_zero; --col) {
if (static_cast<uint8_t> (V (0, col)) != 0)
continue;
while (swap < col && static_cast<uint8_t> (V (0, swap)) == 0)
++swap;
if (swap >= col)
break; // line full of zeros, nothing to swap
// now V(0, col) == 0 and V(0, swap != 0. swap them
A.col (col + i).swap (A.col (swap + i));
X.col (col + i).swap (X.col (swap + i));
std::swap (c[col + i], c[swap + i]); //rfc6330, pg32
}
// now add a multiple of the row V(0) to the other rows of *A* so that
// the other rows of *V* have a zero first column.
for (uint16_t row = 1; row < V.rows(); ++row) {
if (static_cast<uint8_t> (V (row, 0)) != 0) {
const Octet multiple = V (row, 0) / V (0, 0);
A.row (row + i) += A.row (i) * multiple;
D.row (row + i) += D.row (i) * multiple; //rfc6330, pg32
}
}
// finally increment i by 1, u by (non_zero - 1) and repeat.
++i;
u += non_zero - 1;
}
return std::make_tuple (true, i, u);
}
bool Precode_Matrix::decode_phase2 (DenseMtx &D, const uint16_t i,
const uint16_t u)
{
// rfc 6330, pg 35
// U_Lower parameters (u x u):
const uint16_t row_start = i, row_end = static_cast<uint16_t> (_params.L);
const uint16_t col_start = static_cast<uint16_t> (A.cols() - u);
// try to bring U_Lower to Identity with gaussian elimination.
// remember that all row swaps affect A as well, not just U_Lower
for (uint16_t row = row_start; row < row_end; ++row) {
// make sure the considered row has nonzero on the diagonal
uint16_t row_nonzero = row;
const uint16_t col_diag = col_start + (row - row_start);
for (; row_nonzero < row_end; ++row_nonzero) {
if (static_cast<uint8_t> (A (row_nonzero, col_diag)) != 0) {
break;
}
}
if (row_nonzero == row_end) {
// U_Lower is square, we can return early (rank < u, not solvable)
return false;
} else if (row != row_nonzero) {
A.row (row).swap (A.row (row_nonzero));
D.row (row).swap (D.row (row_nonzero));
}
// U_Lower (row, row) != 0. make it 1.
if (static_cast<uint8_t> (A (row, col_diag)) > 1) {
const auto divisor = A (row, col_diag);
A.row (row) /= divisor;
D.row (row) /= divisor;
}
// make U_Lower and identity up to row
for (uint16_t del_row = row_start; del_row < row_end; ++del_row) {
if (del_row == row)
continue;
// subtrace row "row" to "del_row" enough times to make
// row "del_row" start with zero. but row "row" now starts
// with "1", so this is easy.
const auto multiple = A (del_row, col_diag);
if (static_cast<uint8_t> (multiple) != 0) {
A.row (del_row) -= A.row (row) * multiple;
D.row (del_row) -= D.row (row) * multiple;
}
}
}
// A should be resized to LxL.
// we don't really care, as we should not gain that much.
// A.conservativeResize (params.L, params.L);
return true;
}
void Precode_Matrix::decode_phase3 (const DenseMtx &X, DenseMtx &D,
const uint16_t i)
{
// rfc 6330, pg 35:
// To this end, the matrix X is
// multiplied with the submatrix of A consisting of the first i rows of
// A. After this operation, the submatrix of A consisting of the
// intersection of the first i rows and columns equals to X, whereas the
// matrix U_upper is transformed to a sparse form.
auto sub_A = A.block (0, 0, i, A.cols());
sub_A = sub_X * sub_A;
// Now fix D, too
DenseMtx D_2 = D;
for (uint16_t row = 0; row < sub_X.rows(); ++row) {
D.row (row) = sub_X.row (row) * D_2.block (0,0, sub_X.cols(), D.cols());
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
}
}
void Precode_Matrix::decode_phase4 (DenseMtx &D, const uint16_t i,
const uint16_t u)
{
// rfc 6330, pg 35:
// For each of the first i rows of U_upper, do the following: if the row
// has a nonzero entry at position j, and if the value of that nonzero
// entry is b, then add to this row b times row j of I_u
// basically: zero out U_upper. we still need to update D each time, though.
auto U_upper = A.block (0, A.cols() - u, i, u);
for (uint16_t row = 0; row < U_upper.rows(); ++row) {
for (uint16_t col = 0; col < U_upper.cols(); ++col) {
// col == j
auto multiple = U_upper (row, col);
if (static_cast<uint8_t> (multiple) != 0) {
// U_upper is never read again, so we can avoid some writes
//U_upper (row, col) = 0;
// "b times row j of I_u" => row "j" in U_lower.
// aka: U_upper.rows() + j
D.row (row) += D.row (
static_cast<uint16_t> (U_upper.rows()) + col) *
multiple;
}
}
}
}
void Precode_Matrix::decode_phase5 (DenseMtx &D, const uint16_t i)
{
// rc 6330, pg 36
for (uint16_t j = 0; j <= i; ++j) {
if (static_cast<uint8_t> (A (j, j)) != 1) {
// A(j, j) is actually never 0, by construction.
const auto multiple = A (j, j);
A.row (j) /= multiple;
D.row (j) /= multiple;
}
for (uint16_t tmp = 0; tmp < j; ++tmp) { //tmp == "l" in rfc6330
const auto multiple = A (j, tmp);
if (static_cast<uint8_t> (multiple) != 0) {
A.row (j) += A.row (tmp) * multiple;
D.row (j) += D.row (tmp) * multiple;
}
}
}
}
DenseMtx Precode_Matrix::encode (const DenseMtx &C, const uint32_t ISI) const
{
// Generate repair symbols. same algorithm as "get_idxs"
// rfc6330, pg29
DenseMtx ret;
ret = DenseMtx (1, C.cols());
Tuple t = _params.tuple (ISI);
ret.row (0) = C.row (t.b);
t.b = (t.b + t.a) % _params.W;
ret.row (0) += C.row (t.b);
}
while (t.b1 >= _params.P)
t.b1 = (t.b1 + t.a1) % _params.P1;
ret.row (0) += C.row (_params.W + t.b1);
for (uint16_t j = 1; j < t.d1; ++j) {
t.b1 = (t.b1 + t.a1) % _params.P1;
while (t.b1 >= _params.P)
t.b1 = (t.b1 + t.a1) % _params.P1;
ret.row (0) += C.row (_params.W + t.b1);
}
return ret;
}
} // namespace RaptorQ
} // namespace Impl