Newer
Older
/*
* Copyright (c) 2015, Luca Fulchir<luca@fulchir.it>, All rights reserved.
*
* This file is part of "libRaptorQ".
*
* libRaptorQ is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* libRaptorQ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and a copy of the GNU Lesser General Public License
* along with libRaptorQ. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RAPTORQ_INTERLEAVER_HPP
#define RAPTORQ_INTERLEAVER_HPP
#include "common.hpp"
#include "multiplication.hpp"
#include "table2.hpp"
#include <cmath>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
// force promotion to double in division
namespace {
double RAPTORQ_LOCAL div_floor (const double a, const double b);
double RAPTORQ_LOCAL div_ceil (const double a, const double b);
}
}
namespace RaptorQ {
namespace Impl {
void test (void);
//
// Partition: see RFC6330: each object is partitioned in
// N1 blocks of size S1, plus N2 blocks of size S2. This class tracks it
//
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
Partition() = default;
// partition something into "num1" partitions of "size1" and "num2"
// of "size2"
// still better than the TL, TS, NL, NL in RFC6330...
Partition (const uint64_t obj_size, const uint16_t partitions)
{
uint16_t size_1, size_2, blocks_1, blocks_2;
size_1 = static_cast<uint16_t> (div_ceil (obj_size, partitions));
size_2 = static_cast<uint16_t> (div_floor (obj_size, partitions));
blocks_1 = static_cast<uint16_t> (obj_size - size_2 * partitions);
blocks_2 = partitions - blocks_1;
if (blocks_1 == 0)
size_1 = 0;
part1 = {blocks_1, size_1};
part2 = {blocks_2, size_2};
}
uint16_t size (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
if (part_number == 0)
return std::get<1>(part1);
return std::get<1>(part2);
}
uint16_t num (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
if (part_number == 0)
return std::get<0>(part1);
return std::get<0>(part2);
}
uint16_t tot (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
// num * size
if (part_number == 0)
return std::get<0>(part1) * std::get<1>(part1);
return std::get<0>(part2) * std::get<1>(part2);
}
// PAIR: amount, size
std::pair<uint16_t, uint16_t> part1, part2;
};
template <typename T>
class RAPTORQ_LOCAL Symbol_Wrap
{
public:
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
Symbol_Wrap (const uint8_t *raw, const uint16_t size) : _raw (raw),
_size (size)
{}
Symbol_Wrap<T>& operator= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i)
_raw[i] = a._raw[i];
return *this;
}
Symbol_Wrap<T>& operator+= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i)
_raw[i] ^= a._raw[i];
return *this;
}
Symbol_Wrap<T>& operator*= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i) {
if (_raw[i] == 0 || a._raw[i] == 0) {
_raw[i] = 0;
} else {
_raw[i] = Impl::oct_exp[Impl::oct_log[_raw[i]] +
Impl::oct_exp[a._raw[i]]];
}
}
return *this;
}
Symbol_Wrap<T>& operator/= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i) {
if (_raw[i] != 0) {
_raw[i] = Impl::oct_exp[Impl::oct_log[_raw[i]] -
Impl::oct_exp[a._raw[i]] + 255];
}
}
return *this;
}
const uint8_t *_raw = nullptr;
const uint16_t _size;
};
//
// Symbol:
// Basic unit later on. This is a block of interneaved sub-symbols.
// see RFC 6330 for details
// Padding is included here
//
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
Symbol_it ();
Symbol_it (const Rnd_It data_from, const Rnd_It data_to, const size_t start,
const size_t end, const size_t idx,
const Partition sub_blocks,
const uint16_t symbol_size,
const uint16_t symbol_id,
const uint16_t k)
:_data_from (data_from), _data_to (data_to), _start (start),
_end (end), _idx(idx), _sub_blocks (sub_blocks),
_symbol_size (symbol_size),
_symbol_id (symbol_id), _k(k)
{}
constexpr Symbol_it<Rnd_It> begin() const
{
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, 0,
_sub_blocks, _symbol_size, _symbol_id, _k);
}
constexpr Symbol_it<Rnd_It> end() const
{
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end,
_sub_blocks.tot (0) + _sub_blocks.tot (1),
_sub_blocks, _symbol_size, _symbol_id, _k);
}
using T = typename std::iterator_traits<Rnd_It>::value_type;
T operator[] (const size_t pos) const
{
size_t i;
if (pos < _sub_blocks.tot (0)) {
auto sub_blk_id = pos / _sub_blocks.size (0);
i = _start +
sub_blk_id * _k * _sub_blocks.size (0) +// right sub block
_symbol_id * _sub_blocks.size (0) + // get right subsymbol
pos % _sub_blocks.size (0); // get right alignment
} else {
auto pos_part2 = pos - _sub_blocks.tot (0);
auto sub_blk_id = pos_part2 / _sub_blocks.size (1);
i = _start + _sub_blocks.tot (0) * _k + // skip previous partition
sub_blk_id * _k * _sub_blocks.size (1) +// right sub block
_symbol_id * _sub_blocks.size (1) + // get right subsymbol
pos_part2 % _sub_blocks.size (1); // get right alignment
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
auto data = _data_from + static_cast<int64_t>(i);
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
if (data >= _data_to) {
// Padding. remember to cast it to the same time as the iterator
// value
return static_cast<
typename std::iterator_traits<Rnd_It>::value_type> (0);
}
return *data;
}
T operator* () const
{
return (*this)[_idx];
}
Symbol_it<Rnd_It> operator++ (int i) const
{
if (_idx + i >= _sub_blocks.tot (0) + _sub_blocks.tot (1))
return end();
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, _idx + i,
_sub_blocks, _symbol_size, _symbol_id, _k);
}
Symbol_it<Rnd_It>& operator++()
{
if (_idx < _sub_blocks.tot (0) + _sub_blocks.tot (1))
++_idx;
return *this;
}
bool operator== (const Symbol_it<Rnd_It> &s) const
{
return _idx == s._idx;
}
bool operator!= (const Symbol_it<Rnd_It> &s) const
{
return _idx != s._idx;
}
const Rnd_It _data_from, _data_to;
const size_t _start, _end;
size_t _idx;
const Partition _sub_blocks;
const uint16_t _symbol_size, _symbol_id, _k;
};
//
// Source_Block:
// First unit of partitioning for the object to be transferred.
//
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
Source_Block (const Rnd_It data_from, const Rnd_It data_to,
const size_t start,
const size_t end, const size_t idx,
const Partition sub_blocks,
const uint16_t symbol_size)
:_data_from (data_from), _data_to (data_to), _start (start),
_end (end), _idx(idx), _sub_blocks(sub_blocks),
_symbol_size (symbol_size),
_symbols (
static_cast<uint16_t> ((end - start) / symbol_size))
{}
constexpr Source_Block<Rnd_It> begin() const
{
return Source_Block (_data_from, _data_to, _start, _end, 0, _sub_blocks,
_symbol_size);
}
constexpr Source_Block<Rnd_It> end() const
{
return Source_Block<Rnd_It> (_data_from, _data_to, _start, _end, _end,
_sub_blocks, _symbol_size);
}
const Symbol_it<Rnd_It> operator[] (const uint16_t symbol_id) const
{
if (symbol_id < _symbols) {
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, 0,
_sub_blocks, _symbol_size, symbol_id,
_symbols);
}
// out of range.
return Symbol_it<Rnd_It> (_data_from, _data_to, 0, 0, 0, _sub_blocks,
_symbol_size, 0, 0);
}
const Symbol_it<Rnd_It> operator* () const
{
return (*this)[_idx];
}
const Source_Block<Rnd_It> operator++ (int i) const
{
if (_idx + i >= _symbols)
return end();
return Source_Block<Rnd_It> (_data_from, _data_to, _start, _end,
_idx + i, _sub_blocks, _symbol_size);
}
const Source_Block<Rnd_It>& operator++ ()
{
if (_idx < _symbols)
++_idx;
return *this;
}
const Rnd_It _data_from, _data_to;
const size_t _start, _end;
size_t _idx;
const Partition _sub_blocks;
const uint16_t _symbol_size, _symbols;
// Take an object file, and handle the source block, sub block, sub symbol
// and symbol division and interleaving, and padding.
//
operator bool() const; // true => all ok
Interleaver (const Rnd_It data_from, const Rnd_It data_to,
const uint16_t min_subsymbol_size,
const size_t max_block_decodable,
const uint16_t symbol_syze);
Source_Block<Rnd_It>& begin() const;
Source_Block<Rnd_It>& end() const;
Interleaver<Rnd_It>& operator++();
Source_Block<Rnd_It> operator*() const;
Source_Block<Rnd_It> operator[] (uint8_t source_block_id) const;
Partition get_partition() const;
uint16_t source_symbols(const uint8_t SBN) const;
uint8_t blocks () const;
uint16_t sub_blocks () const;
uint16_t symbol_size() const;
const Rnd_It _data_from, _data_to;
const uint16_t _symbol_size;
uint16_t _sub_blocks, _source_symbols, iterator_idx = 0;
uint8_t _alignment, _source_blocks;
// Please everyone take a moment to tank the RFC6330 guys for
// giving such wonderfully self-explanatory names to *everything*.
// Same names are kept to better track the rfc
// (SIZE, SIZE, BLOCKNUM, BLOCKNUM) for:
Partition _source_part, _sub_part;
};
///////////////////////////////////
//
// IMPLEMENTATION OF ABOVE TEMPLATE
//
///////////////////////////////////
template <typename Rnd_It>
Interleaver<Rnd_It>::Interleaver (const Rnd_It data_from,
const Rnd_It data_to,
const uint16_t min_subsymbol_size,
const size_t max_sub_block,
const uint16_t symbol_size)
:_data_from (data_from), _data_to (data_to), _symbol_size (symbol_size),
_alignment (sizeof(typename std::iterator_traits<Rnd_It>::value_type))
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
IS_RANDOM(Rnd_It, "RaptorQ::Impl::Interleaver");
// all parameters are in octets
assert(_symbol_size >= _alignment &&
"RaptorQ: symbol_size must be >= alignment");
assert((_symbol_size % _alignment) == 0 &&
"RaptorQ: symbol_size must be multiple of alignment");
assert(min_subsymbol_size >= _alignment &&
"RaptorQ: minimum subsymbol must be at least aligment");
assert(min_subsymbol_size <= _symbol_size &&
"RaptorQ: minimum subsymbol must be at most symbol_size");
assert((min_subsymbol_size % _alignment) == 0 &&
"RaptorQ: minimum subsymbol must be multiple of alignment");
// derive number of source blocks and sub blocks. seed RFC 6330, pg 8
std::vector<uint16_t> sizes;
size_t iter_size =sizeof(typename std::iterator_traits<Rnd_It>::value_type);
const double input_size = static_cast<double>(_data_to - _data_from) *
iter_size;
const double Kt = div_ceil (input_size, symbol_size);
const size_t N_max = static_cast<size_t> (div_floor (_symbol_size,
min_subsymbol_size));
// symbol_size must be a multiple of our alignment
if (_symbol_size % _alignment != 0 || min_subsymbol_size < _alignment ||
(min_subsymbol_size % _alignment) != 0 ||
min_subsymbol_size > symbol_size) {
// nonsense configurations. refuse to work.
_alignment = 0;
return;
}
// rfc 6330, pg 8
size_t tmp;
sizes.reserve (N_max);
// find our KL(n), for each n
for (tmp = 1; tmp <= N_max; ++tmp) {
auto upper_bound = max_sub_block / (_alignment *
div_ceil (_symbol_size, _alignment * tmp));
size_t idx;
for (idx = 0; idx < RaptorQ::Impl::K_padded.size(); ++idx) {
if (RaptorQ::Impl::K_padded[idx] > upper_bound)
break;
}
// NOTE: tmp starts from 1, but "sizes" stores from 0.
sizes.push_back (RaptorQ::Impl::K_padded[idx == 0 ? 0 : --idx]);
}
const uint64_t _test_blocks = static_cast<uint64_t> (
div_ceil (Kt, sizes[N_max - 1]));
if (_test_blocks > std::numeric_limits<uint8_t>::max()) {
_alignment = 0;
return;
}
_source_blocks = static_cast<uint8_t> (_test_blocks);
tmp = static_cast<size_t> (div_ceil (Kt, _source_blocks));
for (size_t i = 0; i < sizes.size(); ++i) {
// rfc: ceil (Kt / Z) <= KL(n)
if (tmp <= sizes[i]) {
_sub_blocks = static_cast<uint16_t> (i + 1); // +1: see above note
break;
}
}
assert(div_ceil (div_ceil (input_size, _symbol_size),
_source_blocks) <= K_max &&
"RaptorQ: RFC: ceil(ceil(F/T)/Z must be <= K'_max");
if (_source_blocks == 0 || _sub_blocks == 0 ||
symbol_size < _alignment || symbol_size % _alignment != 0 ||
div_ceil (div_ceil ( input_size, _symbol_size),
_source_blocks) > K_max) {
_alignment = 0;
return;
}
// blocks and size for source block partitioning
_source_part = Partition (static_cast<uint64_t> (Kt), _source_blocks);
_source_symbols = _source_part.size(0) + _source_part.size(1);
// blocks and size for sub-block partitioning
_sub_part = Partition (_symbol_size / _alignment, _sub_blocks);
template <typename Rnd_It>
Interleaver<Rnd_It>::operator bool() const
// true => all ok
return _alignment != 0;
template <typename Rnd_It>
Source_Block<Rnd_It> Interleaver<Rnd_It>::operator[] (
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// now we start working with multiples of T.
// identify the start and end of the requested block.
uint16_t al_symbol_size = _symbol_size /
sizeof(typename std::iterator_traits<Rnd_It>::value_type);
if (source_block_id < _source_part.num(0)) {
size_t sb_start = source_block_id * _source_part.size(0) *
al_symbol_size;
size_t sb_end = (source_block_id + 1) * _source_part.size(0) *
al_symbol_size;
return Source_Block<Rnd_It> (_data_from, _data_to, sb_start, sb_end, 0,
_sub_part, al_symbol_size);
} else if (source_block_id - _source_part.num(0) < _source_part.num(1)) {
// start == all the previous partition
size_t sb_start = _source_part.tot(0) * al_symbol_size +
// plus some blocks of the new partition
(source_block_id - _source_part.num(0)) *
_source_part.size(1) * al_symbol_size;
size_t sb_end = sb_start + _source_part.size(1) * al_symbol_size;
return Source_Block<Rnd_It> (_data_from, _data_to, sb_start, sb_end, 0,
_sub_part, al_symbol_size);
} else {
assert(false && "RaptorQ: source_block_id out of range");
return Source_Block<Rnd_It> (_data_from, _data_to, 0, 0, 0, _sub_part,
al_symbol_size);
}
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::symbol_size() const
// return the number of alignments, to make things easier
return _symbol_size / sizeof(
typename std::iterator_traits<Rnd_It>::value_type);
template <typename Rnd_It>
Partition Interleaver<Rnd_It>::get_partition() const
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::source_symbols (const uint8_t SBN) const
if (SBN < _source_part.num (0))
return _source_part.size (0);
if (SBN - _source_part.num (0) < _source_part.num (1))
return _source_part.size (1);
return 0;
template <typename Rnd_It>
uint8_t Interleaver<Rnd_It>::blocks () const
return static_cast<uint8_t> (_source_part.num (0) + _source_part.num (1));
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::sub_blocks () const
return _sub_part.num (0) + _sub_part.num (1);
template <typename Rnd_It>
Source_Block<Rnd_It>& Interleaver<Rnd_It>::begin() const
template <typename Rnd_It>
Source_Block<Rnd_It>& Interleaver<Rnd_It>::end() const
template <typename Rnd_It>
Interleaver<Rnd_It>& Interleaver<Rnd_It>::operator++()
template <typename Rnd_It>
Source_Block<Rnd_It> Interleaver<Rnd_It>::operator*() const