Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
* Copyright (c) 2015, Luca Fulchir<luca@fulchir.it>, All rights reserved.
*
* This file is part of "libRaptorQ".
*
* libRaptorQ is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* libRaptorQ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and a copy of the GNU Lesser General Public License
* along with libRaptorQ. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RAPTORQ_INTERLEAVER_HPP
#define RAPTORQ_INTERLEAVER_HPP
#include "common.hpp"
#include "multiplication.hpp"
#include "table2.hpp"
#include <cmath>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
// force promotion to double in division
namespace {
float RAPTORQ_LOCAL div_floor (const float a, const float b);
float RAPTORQ_LOCAL div_ceil (const float a, const float b);
float div_floor (const float a, const float b)
{
return std::floor (a / b);
}
float div_ceil (const float a, const float b)
{
return std::ceil (a / b);
}
}
namespace RaptorQ {
namespace Impl {
void test (void);
//
// Partition: see RFC6330: each object is partitioned in
// N1 blocks of size S1, plus N2 blocks of size S2. This class tracks it
//
class RAPTORQ_API Partition
{
public:
Partition() = default;
// partition something into "num1" partitions of "size1" and "num2"
// of "size2"
// still better than the TL, TS, NL, NL in RFC6330...
{
uint16_t size_1, size_2, blocks_1, blocks_2;
size_1 = static_cast<uint16_t> (div_ceil (obj_size, partitions));
size_2 = static_cast<uint16_t> (div_floor (obj_size, partitions));
blocks_2 = partitions - blocks_1;
if (blocks_1 == 0)
size_1 = 0;
part1 = {blocks_1, size_1};
part2 = {blocks_2, size_2};
}
uint16_t size (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
if (part_number == 0)
return std::get<1>(part1);
return std::get<1>(part2);
}
uint16_t num (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
if (part_number == 0)
return std::get<0>(part1);
return std::get<0>(part2);
}
uint16_t tot (const uint8_t part_number) const
{
assert(part_number < 2 && "partition: only two partitions exists");
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// num * size
if (part_number == 0)
return std::get<0>(part1) * std::get<1>(part1);
return std::get<0>(part2) * std::get<1>(part2);
}
private:
// PAIR: amount, size
std::pair<uint16_t, uint16_t> part1, part2;
};
template <typename T>
class RAPTORQ_LOCAL Symbol_Wrap
{
public:
Symbol_Wrap (const uint8_t *raw, const uint16_t size) : _raw (raw),
_size (size)
{}
Symbol_Wrap<T>& operator= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i)
_raw[i] = a._raw[i];
return *this;
}
Symbol_Wrap<T>& operator+= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i)
_raw[i] ^= a._raw[i];
return *this;
}
Symbol_Wrap<T>& operator*= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i) {
if (_raw[i] == 0 || a._raw[i] == 0) {
_raw[i] = 0;
} else {
_raw[i] = Impl::oct_exp[Impl::oct_log[_raw[i]] +
Impl::oct_exp[a._raw[i]]];
}
}
return *this;
}
Symbol_Wrap<T>& operator/= (const Symbol_Wrap<T> &a)
{
assert (_raw != nullptr && "Encoded_Symbol raw == nullptr");
for (size_t i = 0; i < _size * sizeof(T); ++i) {
if (_raw[i] != 0) {
_raw[i] = Impl::oct_exp[Impl::oct_log[_raw[i]] -
Impl::oct_exp[a._raw[i]] + 255];
}
}
return *this;
}
private:
const uint8_t *_raw = nullptr;
const uint16_t _size;
};
//
// Symbol:
// Basic unit later on. This is a block of interneaved sub-symbols.
// see RFC 6330 for details
// Padding is included here
//
class RAPTORQ_LOCAL Symbol_it
{
public:
Symbol_it ();
Symbol_it (const Rnd_It data_from, const Rnd_It data_to, const size_t start,
const size_t end, const size_t idx,
const Partition sub_blocks,
const uint16_t symbol_size,
const uint16_t symbol_id,
const uint16_t k)
:_data_from (data_from), _data_to (data_to), _start (start),
_end (end), _idx(idx), _sub_blocks (sub_blocks),
_symbol_size (symbol_size),
_symbol_id (symbol_id), _k(k)
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, 0,
_sub_blocks, _symbol_size, _symbol_id, _k);
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end,
_sub_blocks.tot (0) + _sub_blocks.tot (1),
_sub_blocks, _symbol_size, _symbol_id, _k);
}
using T = typename std::iterator_traits<Rnd_It>::value_type;
T operator[] (const size_t pos) const
{
size_t i;
if (pos < _sub_blocks.tot (0)) {
auto sub_blk_id = pos / _sub_blocks.size (0);
i = _start +
sub_blk_id * _k * _sub_blocks.size (0) +// right sub block
_symbol_id * _sub_blocks.size (0) + // get right subsymbol
pos % _sub_blocks.size (0); // get right alignment
} else {
auto pos_part2 = pos - _sub_blocks.tot (0);
auto sub_blk_id = pos_part2 / _sub_blocks.size (1);
i = _start + _sub_blocks.tot (0) * _k + // skip previous partition
sub_blk_id * _k * _sub_blocks.size (1) +// right sub block
_symbol_id * _sub_blocks.size (1) + // get right subsymbol
pos_part2 % _sub_blocks.size (1); // get right alignment
}
auto data = _data_from + i;
if (data >= _data_to) {
// Padding. remember to cast it to the same time as the iterator
// value
return static_cast<
typename std::iterator_traits<Rnd_It>::value_type> (0);
}
return *data;
{
if (_idx + i >= _sub_blocks.tot (0) + _sub_blocks.tot (1))
return end();
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, _idx + i,
_sub_blocks, _symbol_size, _symbol_id, _k);
{
if (_idx < _sub_blocks.tot (0) + _sub_blocks.tot (1))
++_idx;
return *this;
}
const size_t _start, _end;
size_t _idx;
const Partition _sub_blocks;
const uint16_t _symbol_size, _symbol_id, _k;
};
//
// Source_Block:
// First unit of partitioning for the object to be transferred.
//
Source_Block (const Rnd_It data_from, const Rnd_It data_to,
const size_t start,
const size_t end, const size_t idx,
const Partition sub_blocks,
const uint16_t symbol_size)
:_data_from (data_from), _data_to (data_to), _start (start),
_end (end), _idx(idx), _sub_blocks(sub_blocks),
_symbol_size (symbol_size),
_symbols (
static_cast<uint16_t> ((end - start) / symbol_size))
return Source_Block (_data_from, _data_to, _start, _end, 0, _sub_blocks,
_symbol_size);
return Source_Block<Rnd_It> (_data_from, _data_to, _start, _end, _end,
const Symbol_it<Rnd_It> operator[] (const uint16_t symbol_id) const
return Symbol_it<Rnd_It> (_data_from, _data_to, _start, _end, 0,
_sub_blocks, _symbol_size, symbol_id,
_symbols);
}
// out of range.
return Symbol_it<Rnd_It> (_data_from, _data_to, 0, 0, 0, _sub_blocks,
_symbol_size, 0, 0);
return Source_Block<Rnd_It> (_data_from, _data_to, _start, _end,
_idx + i, _sub_blocks, _symbol_size);
{
if (_idx < _symbols)
++_idx;
return *this;
}
private:
const size_t _start, _end;
size_t _idx;
const Partition _sub_blocks;
const uint16_t _symbol_size, _symbols;
};
//
// Take an object file, and handle the source block, sub block, sub symbol
// and symbol division and interleaving, and padding.
//
class RAPTORQ_API Interleaver
{
public:
operator bool() const; // true => all ok
Interleaver (const Rnd_It data_from, const Rnd_It data_to,
const uint16_t min_subsymbol_size,
const size_t max_block_decodable,
const uint16_t symbol_syze);
Source_Block<Rnd_It>& begin() const;
Source_Block<Rnd_It>& end() const;
Interleaver<Rnd_It>& operator++();
Source_Block<Rnd_It> operator*() const;
Source_Block<Rnd_It> operator[] (uint8_t source_block_id) const;
uint16_t source_symbols(const uint8_t SBN) const;
uint8_t blocks () const;
uint16_t sub_blocks () const;
uint16_t symbol_size() const;
protected:
private:
uint16_t _sub_blocks, _source_symbols, iterator_idx = 0;
uint8_t _alignment, _source_blocks;
// Please everyone take a moment to tank the RFC6330 guys for
// giving such wonderfully self-explanatory names to *everything*.
// Same names are kept to better track the rfc
// (SIZE, SIZE, BLOCKNUM, BLOCKNUM) for:
Partition _source_part, _sub_part;
};
///////////////////////////////////
//
// IMPLEMENTATION OF ABOVE TEMPLATE
//
///////////////////////////////////
template <typename Rnd_It>
Interleaver<Rnd_It>::Interleaver (const Rnd_It data_from,
const Rnd_It data_to,
const uint16_t min_subsymbol_size,
const size_t max_block_decodable,
const uint16_t symbol_size)
:_data_from (data_from), _data_to (data_to), _symbol_size (symbol_size),
_alignment (sizeof(typename std::iterator_traits<Rnd_It>::value_type))
// all parameters are in octets
assert(_symbol_size >= _alignment &&
"RaptorQ: symbol_size must be >= alignment");
assert((_symbol_size % _alignment) == 0 &&
"RaptorQ: symbol_size must be multiple of alignment");
assert(min_subsymbol_size >= _alignment &&
"RaptorQ: minimum subsymbol must be at least aligment");
assert((min_subsymbol_size % _alignment) == 0 &&
"RaptorQ: minimum subsymbol must be multiple of alignment");
// derive number of source blocks and sub blocks. seed RFC 6330, pg 8
std::vector<uint16_t> sizes;
const float input_size = _data_to - data_from;
const float Kt = div_ceil(input_size *
sizeof(typename std::iterator_traits<Rnd_It>::value_type),
symbol_size);
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
const size_t N_max = static_cast<size_t> (div_floor (_symbol_size,
min_subsymbol_size));
// symbol_size must be a multiple of our alignment
if (_symbol_size % _alignment != 0 || min_subsymbol_size < _alignment ||
(min_subsymbol_size % _alignment) != 0 ||
min_subsymbol_size > symbol_size) {
// nonsense configurations. refuse to work.
_alignment = 0;
return;
}
// rfc 6330, pg 8
size_t tmp;
sizes.reserve (N_max);
// find our KL(n), for each n
for (tmp = 1; tmp <= N_max; ++tmp) {
auto upper_bound = max_block_decodable / (_alignment *
div_ceil (_symbol_size, _alignment * tmp));
size_t idx;
for (idx = 0; idx < RaptorQ::Impl::K_padded.size(); ++idx) {
if (RaptorQ::Impl::K_padded[idx] > upper_bound)
break;
}
// NOTE: tmp starts from 1, but "sizes" stores from 0.
sizes.push_back (RaptorQ::Impl::K_padded[idx == 0 ? 0 : --idx]);
}
_source_blocks = static_cast<uint8_t> (div_ceil (Kt, sizes[N_max - 1]));
tmp = static_cast<size_t> (div_ceil (Kt, _source_blocks));
for (size_t i = 0; i < sizes.size(); ++i) {
// rfc: ceil (Kt / Z) <= KL(n)
if (tmp <= sizes[i]) {
_sub_blocks = static_cast<uint16_t> (i + 1); // +1: see above note
assert(div_ceil (div_ceil (input_size, _symbol_size),
_source_blocks) <= K_max &&
"RaptorQ: RFC: ceil(ceil(F/T)/Z must be <= K'_max");
if (_source_blocks == 0 || _sub_blocks == 0 ||
symbol_size < _alignment || symbol_size % _alignment != 0 ||
div_ceil (div_ceil ( input_size, _symbol_size),
_source_blocks) > K_max) {
_alignment = 0;
return;
}
// blocks and size for source block partitioning
_source_part = Partition (static_cast<uint64_t> (Kt), _source_blocks);
_source_symbols = _source_part.size(0) + _source_part.size(1);
// blocks and size for sub-block partitioning
_sub_part = Partition (_symbol_size / _alignment, _sub_blocks);
}
template <typename Rnd_It>
Interleaver<Rnd_It>::operator bool() const
template <typename Rnd_It>
Source_Block<Rnd_It> Interleaver<Rnd_It>::operator[] (
uint8_t source_block_id) const
{
// now we start working with multiples of T.
// identify the start and end of the requested block.
sizeof(typename std::iterator_traits<Rnd_It>::value_type);
size_t sb_start = source_block_id * _source_part.size(0) *
al_symbol_size;
size_t sb_end = (source_block_id + 1) * _source_part.size(0) *
return Source_Block<Rnd_It> (_data_from, _data_to, sb_start, sb_end, 0,
_sub_part, al_symbol_size);
} else if (source_block_id - _source_part.num(0) < _source_part.num(1)) {
// start == all the previous partition
// plus some blocks of the new partition
(source_block_id - _source_part.num(0)) *
_source_part.size(1) * al_symbol_size;
return Source_Block<Rnd_It> (_data_from, _data_to, sb_start, sb_end, 0,
_sub_part, al_symbol_size);
} else {
assert(false && "RaptorQ: source_block_id out of range");
return Source_Block<Rnd_It> (_data_from, _data_to, 0, 0, 0, _sub_part,
al_symbol_size);
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::symbol_size() const
return _symbol_size / sizeof(
typename std::iterator_traits<Rnd_It>::value_type);
template <typename Rnd_It>
Partition Interleaver<Rnd_It>::get_partition() const
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::source_symbols (const uint8_t SBN) const
{
if (SBN < _source_part.num (0))
return _source_part.size (0);
if (SBN - _source_part.num (0) < _source_part.num (1))
return _source_part.size (1);
return 0;
}
template <typename Rnd_It>
uint8_t Interleaver<Rnd_It>::blocks () const
return static_cast<uint8_t> (_source_part.num (0) + _source_part.num (1));
template <typename Rnd_It>
uint16_t Interleaver<Rnd_It>::sub_blocks () const
template <typename Rnd_It>
Source_Block<Rnd_It>& Interleaver<Rnd_It>::begin() const
template <typename Rnd_It>
Source_Block<Rnd_It>& Interleaver<Rnd_It>::end() const
template <typename Rnd_It>
Interleaver<Rnd_It>& Interleaver<Rnd_It>::operator++()
template <typename Rnd_It>
Source_Block<Rnd_It> Interleaver<Rnd_It>::operator*() const