Skip to content
optionparser.h 99.2 KiB
Newer Older
Luker's avatar
Luker committed
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
     */
    bool nextRow()
    {
      if (ptr == 0)
      {
        restartRow();
        return rowstart != 0;
      }

      while (*ptr != 0 && *ptr != '\n')
        ++ptr;

      if (*ptr == 0)
      {
        if ((rowdesc + 1)->help == 0) // table break
          return false;

        ++rowdesc;
        rowstart = rowdesc->help;
      }
      else // if (*ptr == '\n')
      {
        rowstart = ptr + 1;
      }

      restartRow();
      return true;
    }

    /**
     * @brief Reset iteration to the beginning of the current row.
     */
    void restartRow()
    {
      ptr = rowstart;
      col = -1;
      len = 0;
      screenlen = 0;
      max_line_in_block = 0;
      line_in_block = 0;
      target_line_in_block = 0;
      hit_target_line = true;
    }

    /**
     * @brief Moves iteration to the next part (if any). Has to be called once after each call to
     * @ref nextRow() to move to the 1st part of the row.
     * @retval false if moving to next part failed because no further part exists.
     *
     * See @ref LinePartIterator for details about the iteration.
     */
    bool next()
    {
      if (ptr == 0)
        return false;

      if (col == -1)
      {
        col = 0;
        update_length();
        return true;
      }

      ptr += len;
      while (true)
      {
        switch (*ptr)
        {
          case '\v':
            upmax(max_line_in_block, ++line_in_block);
            ++ptr;
            break;
          case '\t':
            if (!hit_target_line) // if previous column did not have the targetline
            { // then "insert" a 0-length part
              update_length();
              hit_target_line = true;
              return true;
            }

            hit_target_line = false;
            line_in_block = 0;
            ++col;
            ++ptr;
            break;
          case 0:
          case '\n':
            if (!hit_target_line) // if previous column did not have the targetline
            { // then "insert" a 0-length part
              update_length();
              hit_target_line = true;
              return true;
            }

            if (++target_line_in_block > max_line_in_block)
            {
              update_length();
              return false;
            }

            hit_target_line = false;
            line_in_block = 0;
            col = 0;
            ptr = rowstart;
            continue;
          default:
            ++ptr;
            continue;
        } // switch

        if (line_in_block == target_line_in_block)
        {
          update_length();
          hit_target_line = true;
          return true;
        }
      } // while
    }

    /**
     * @brief Returns the index (counting from 0) of the column in which
     * the part pointed to by @ref data() is located.
     */
    int column()
    {
      return col;
    }

    /**
     * @brief Returns the index (counting from 0) of the line within the current column
     * this part belongs to.
     */
    int line()
    {
      return target_line_in_block; // NOT line_in_block !!! It would be wrong if !hit_target_line
    }

    /**
     * @brief Returns the length of the part pointed to by @ref data() in raw chars (not UTF-8 characters).
     */
    int length()
    {
      return len;
    }

    /**
     * @brief Returns the width in screen columns of the part pointed to by @ref data().
     * Takes multi-byte UTF-8 sequences and wide characters into account.
     */
    int screenLength()
    {
      return screenlen;
    }

    /**
     * @brief Returns the current part of the iteration.
     */
    const char* data()
    {
      return ptr;
    }
  };

  /**
   * @internal
   * @brief Takes input and line wraps it, writing out one line at a time so that
   * it can be interleaved with output from other columns.
   *
   * The LineWrapper is used to handle the last column of each table as well as interjections.
   * The LineWrapper is called once for each line of output. If the data given to it fits
   * into the designated width of the last column it is simply written out. If there
   * is too much data, an appropriate split point is located and only the data up to this
   * split point is written out. The rest of the data is queued for the next line.
   * That way the last column can be line wrapped and interleaved with data from
   * other columns. The following example makes this clearer:
   * @code
   * Column 1,1    Column 2,1     This is a long text
   * Column 1,2    Column 2,2     that does not fit into
   *                              a single line.
   * @endcode
   *
   * The difficulty in producing this output is that the whole string
   * "This is a long text that does not fit into a single line" is the
   * 1st and only part of column 3. In order to produce the above
   * output the string must be output piecemeal, interleaved with
   * the data from the other columns.
   */
  class LineWrapper
  {
    static const int bufmask = 15; //!< Must be a power of 2 minus 1.
    /**
     * @brief Ring buffer for length component of pair (data, length).
     */
    int lenbuf[bufmask + 1];
    /**
     * @brief Ring buffer for data component of pair (data, length).
     */
    const char* datbuf[bufmask + 1];
    /**
     * @brief The indentation of the column to which the LineBuffer outputs. LineBuffer
     * assumes that the indentation has already been written when @ref process()
     * is called, so this value is only used when a buffer flush requires writing
     * additional lines of output.
     */
    int x;
    /**
     * @brief The width of the column to line wrap.
     */
    int width;
    int head; //!< @brief index for next write
    int tail; //!< @brief index for next read - 1 (i.e. increment tail BEFORE read)

    /**
     * @brief Multiple methods of LineWrapper may decide to flush part of the buffer to
     * free up space. The contract of process() says that only 1 line is output. So
     * this variable is used to track whether something has output a line. It is
     * reset at the beginning of process() and checked at the end to decide if
     * output has already occurred or is still needed.
     */
    bool wrote_something;

    bool buf_empty()
    {
      return ((tail + 1) & bufmask) == head;
    }

    bool buf_full()
    {
      return tail == head;
    }

    void buf_store(const char* data, int len)
    {
      lenbuf[head] = len;
      datbuf[head] = data;
      head = (head + 1) & bufmask;
    }

    //! @brief Call BEFORE reading ...buf[tail].
    void buf_next()
    {
      tail = (tail + 1) & bufmask;
    }

    /**
     * @brief Writes (data,len) into the ring buffer. If the buffer is full, a single line
     * is flushed out of the buffer into @c write.
     */
    void output(IStringWriter& write, const char* data, int len)
    {
      if (buf_full())
        write_one_line(write);

      buf_store(data, len);
    }

    /**
     * @brief Writes a single line of output from the buffer to @c write.
     */
    void write_one_line(IStringWriter& write)
    {
      if (wrote_something) // if we already wrote something, we need to start a new line
      {
        write("\n", 1);
        int _ = 0;
        indent(write, _, x);
      }

      if (!buf_empty())
      {
        buf_next();
        write(datbuf[tail], lenbuf[tail]);
      }

      wrote_something = true;
    }
  public:

    /**
     * @brief Writes out all remaining data from the LineWrapper using @c write.
     * Unlike @ref process() this method indents all lines including the first and
     * will output a \\n at the end (but only if something has been written).
     */
    void flush(IStringWriter& write)
    {
      if (buf_empty())
        return;
      int _ = 0;
      indent(write, _, x);
      wrote_something = false;
      while (!buf_empty())
        write_one_line(write);
      write("\n", 1);
    }

    /**
     * @brief Process, wrap and output the next piece of data.
     *
     * process() will output at least one line of output. This is not necessarily
     * the @c data passed in. It may be data queued from a prior call to process().
     * If the internal buffer is full, more than 1 line will be output.
     *
     * process() assumes that the a proper amount of indentation has already been
     * output. It won't write any further indentation before the 1st line. If
     * more than 1 line is written due to buffer constraints, the lines following
     * the first will be indented by this method, though.
     *
     * No \\n is written by this method after the last line that is written.
     *
     * @param write where to write the data.
     * @param data the new chunk of data to write.
     * @param len the length of the chunk of data to write.
     */
    void process(IStringWriter& write, const char* data, int len)
    {
      wrote_something = false;

      while (len > 0)
      {
        if (len <= width) // quick test that works because utf8width <= len (all wide chars have at least 2 bytes)
        {
          output(write, data, len);
          len = 0;
        }
        else // if (len > width)  it's possible (but not guaranteed) that utf8len > width
        {
          int utf8width = 0;
          int maxi = 0;
          while (maxi < len && utf8width < width)
          {
            int charbytes = 1;
            unsigned ch = (unsigned char) data[maxi];
            if (ch > 0xC1) // everything <= 0xC1 (yes, even 0xC1 itself) is not a valid UTF-8 start byte
            {
              // int __builtin_clz (unsigned int x)
              // Returns the number of leading 0-bits in x, starting at the most significant bit
              unsigned mask = (unsigned) -1 >> __builtin_clz(ch ^ 0xff);
              ch = ch & mask; // mask out length bits, we don't verify their correctness
              while ((maxi + charbytes < len) && //
                  (((unsigned char) data[maxi + charbytes] ^ 0x80) <= 0x3F)) // while next byte is continuation byte
              {
                ch = (ch << 6) ^ (unsigned char) data[maxi + charbytes] ^ 0x80; // add continuation to char code
                ++charbytes;
              }
              // ch is the decoded unicode code point
              if (ch >= 0x1100 && isWideChar(ch)) // the test for 0x1100 is here to avoid the function call in the Latin case
              {
                if (utf8width + 2 > width)
                  break;
                ++utf8width;
              }
            }
            ++utf8width;
            maxi += charbytes;
          }

          // data[maxi-1] is the last byte of the UTF-8 sequence of the last character that fits
          // onto the 1st line. If maxi == len, all characters fit on the line.

          if (maxi == len)
          {
            output(write, data, len);
            len = 0;
          }
          else // if (maxi < len)  at least 1 character (data[maxi] that is) doesn't fit on the line
          {
            int i;
            for (i = maxi; i >= 0; --i)
              if (data[i] == ' ')
                break;

            if (i >= 0)
            {
              output(write, data, i);
              data += i + 1;
              len -= i + 1;
            }
            else // did not find a space to split at => split before data[maxi]
            { // data[maxi] is always the beginning of a character, never a continuation byte
              output(write, data, maxi);
              data += maxi;
              len -= maxi;
            }
          }
        }
      }
      if (!wrote_something) // if we didn't already write something to make space in the buffer
        write_one_line(write); // write at most one line of actual output
    }

    /**
     * @brief Constructs a LineWrapper that wraps its output to fit into
     * screen columns @c x1 (incl.) to @c x2 (excl.).
     *
     * @c x1 gives the indentation LineWrapper uses if it needs to indent.
     */
    LineWrapper(int x1, int x2) :
        x(x1), width(x2 - x1), head(0), tail(bufmask)
    {
      if (width < 2) // because of wide characters we need at least width 2 or the code breaks
        width = 2;
    }
  };

  /**
   * @internal
   * @brief This is the implementation that is shared between all printUsage() templates.
   * Because all printUsage() templates share this implementation, there is no template bloat.
   */
  static void printUsage(IStringWriter& write, const Descriptor usage[], int width = 80, //
                         int last_column_min_percent = 50, int last_column_own_line_max_percent = 75)
  {
    if (width < 1) // protect against nonsense values
      width = 80;

    if (width > 10000) // protect against overflow in the following computation
      width = 10000;

    int last_column_min_width = ((width * last_column_min_percent) + 50) / 100;
    int last_column_own_line_max_width = ((width * last_column_own_line_max_percent) + 50) / 100;
    if (last_column_own_line_max_width == 0)
      last_column_own_line_max_width = 1;

    LinePartIterator part(usage);
    while (part.nextTable())
    {

      /***************** Determine column widths *******************************/

      const int maxcolumns = 8; // 8 columns are enough for everyone
      int col_width[maxcolumns];
      int lastcolumn;
      int leftwidth;
      int overlong_column_threshold = 10000;
      do
      {
        lastcolumn = 0;
        for (int i = 0; i < maxcolumns; ++i)
          col_width[i] = 0;

        part.restartTable();
        while (part.nextRow())
        {
          while (part.next())
          {
            if (part.column() < maxcolumns)
            {
              upmax(lastcolumn, part.column());
              if (part.screenLength() < overlong_column_threshold)
                // We don't let rows that don't use table separators (\t or \v) influence
                // the width of column 0. This allows the user to interject section headers
                // or explanatory paragraphs that do not participate in the table layout.
                if (part.column() > 0 || part.line() > 0 || part.data()[part.length()] == '\t'
                    || part.data()[part.length()] == '\v')
                  upmax(col_width[part.column()], part.screenLength());
            }
          }
        }

        /*
         * If the last column doesn't fit on the same
         * line as the other columns, we can fix that by starting it on its own line.
         * However we can't do this for any of the columns 0..lastcolumn-1.
         * If their sum exceeds the maximum width we try to fix this by iteratively
         * ignoring the widest line parts in the width determination until
         * we arrive at a series of column widths that fit into one line.
         * The result is a layout where everything is nicely formatted
         * except for a few overlong fragments.
         * */

        leftwidth = 0;
        overlong_column_threshold = 0;
        for (int i = 0; i < lastcolumn; ++i)
        {
          leftwidth += col_width[i];
          upmax(overlong_column_threshold, col_width[i]);
        }

      } while (leftwidth > width);

      /**************** Determine tab stops and last column handling **********************/

      int tabstop[maxcolumns];
      tabstop[0] = 0;
      for (int i = 1; i < maxcolumns; ++i)
        tabstop[i] = tabstop[i - 1] + col_width[i - 1];

      int rightwidth = width - tabstop[lastcolumn];
      bool print_last_column_on_own_line = false;
      if (rightwidth < last_column_min_width &&  // if we don't have the minimum requested width for the last column
            ( col_width[lastcolumn] == 0 ||      // and all last columns are > overlong_column_threshold
              rightwidth < col_width[lastcolumn] // or there is at least one last column that requires more than the space available
            )
          )
      {
        print_last_column_on_own_line = true;
        rightwidth = last_column_own_line_max_width;
      }

      // If lastcolumn == 0 we must disable print_last_column_on_own_line because
      // otherwise 2 copies of the last (and only) column would be output.
      // Actually this is just defensive programming. It is currently not
      // possible that lastcolumn==0 and print_last_column_on_own_line==true
      // at the same time, because lastcolumn==0 => tabstop[lastcolumn] == 0 =>
      // rightwidth==width => rightwidth>=last_column_min_width  (unless someone passes
      // a bullshit value >100 for last_column_min_percent) => the above if condition
      // is false => print_last_column_on_own_line==false
      if (lastcolumn == 0)
        print_last_column_on_own_line = false;

      LineWrapper lastColumnLineWrapper(width - rightwidth, width);
      LineWrapper interjectionLineWrapper(0, width);

      part.restartTable();

      /***************** Print out all rows of the table *************************************/

      while (part.nextRow())
      {
        int x = -1;
        while (part.next())
        {
          if (part.column() > lastcolumn)
            continue; // drop excess columns (can happen if lastcolumn == maxcolumns-1)

          if (part.column() == 0)
          {
            if (x >= 0)
              write("\n", 1);
            x = 0;
          }

          indent(write, x, tabstop[part.column()]);

          if ((part.column() < lastcolumn)
              && (part.column() > 0 || part.line() > 0 || part.data()[part.length()] == '\t'
                  || part.data()[part.length()] == '\v'))
          {
            write(part.data(), part.length());
            x += part.screenLength();
          }
          else // either part.column() == lastcolumn or we are in the special case of
               // an interjection that doesn't contain \v or \t
          {
            // NOTE: This code block is not necessarily executed for
            // each line, because some rows may have fewer columns.

            LineWrapper& lineWrapper = (part.column() == 0) ? interjectionLineWrapper : lastColumnLineWrapper;

            if (!print_last_column_on_own_line || part.column() != lastcolumn)
              lineWrapper.process(write, part.data(), part.length());
          }
        } // while

        if (print_last_column_on_own_line)
        {
          part.restartRow();
          while (part.next())
          {
            if (part.column() == lastcolumn)
            {
              write("\n", 1);
              int _ = 0;
              indent(write, _, width - rightwidth);
              lastColumnLineWrapper.process(write, part.data(), part.length());
            }
          }
        }

        write("\n", 1);
        lastColumnLineWrapper.flush(write);
        interjectionLineWrapper.flush(write);
      }
    }
  }

}
;

/**
 * @brief Outputs a nicely formatted usage string with support for multi-column formatting
 * and line-wrapping.
 *
 * printUsage() takes the @c help texts of a Descriptor[] array and formats them into
 * a usage message, wrapping lines to achieve the desired output width.
 *
 * <b>Table formatting:</b>
 *
 * Aside from plain strings which are simply line-wrapped, the usage may contain tables. Tables
 * are used to align elements in the output.
 *
 * @code
 * // Without a table. The explanatory texts are not aligned.
 * -c, --create  |Creates something.
 * -k, --kill  |Destroys something.
 *
 * // With table formatting. The explanatory texts are aligned.
 * -c, --create  |Creates something.
 * -k, --kill    |Destroys something.
 * @endcode
 *
 * Table formatting removes the need to pad help texts manually with spaces to achieve
 * alignment. To create a table, simply insert \\t (tab) characters to separate the cells
 * within a row.
 *
 * @code
 * const option::Descriptor usage[] = {
 * {..., "-c, --create  \tCreates something." },
 * {..., "-k, --kill  \tDestroys something." }, ...
 * @endcode
 *
 * Note that you must include the minimum amount of space desired between cells yourself.
 * Table formatting will insert further spaces as needed to achieve alignment.
 *
 * You can insert line breaks within cells by using \\v (vertical tab).
 *
 * @code
 * const option::Descriptor usage[] = {
 * {..., "-c,\v--create  \tCreates\vsomething." },
 * {..., "-k,\v--kill  \tDestroys\vsomething." }, ...
 *
 * // results in
 *
 * -c,       Creates
 * --create  something.
 * -k,       Destroys
 * --kill    something.
 * @endcode
 *
 * You can mix lines that do not use \\t or \\v with those that do. The plain
 * lines will not mess up the table layout. Alignment of the table columns will
 * be maintained even across these interjections.
 *
 * @code
 * const option::Descriptor usage[] = {
 * {..., "-c, --create  \tCreates something." },
 * {..., "----------------------------------" },
 * {..., "-k, --kill  \tDestroys something." }, ...
 *
 * // results in
 *
 * -c, --create  Creates something.
 * ----------------------------------
 * -k, --kill    Destroys something.
 * @endcode
 *
 * You can have multiple tables within the same usage whose columns are
 * aligned independently. Simply insert a dummy Descriptor with @c help==0.
 *
 * @code
 * const option::Descriptor usage[] = {
 * {..., "Long options:" },
 * {..., "--very-long-option  \tDoes something long." },
 * {..., "--ultra-super-mega-long-option  \tTakes forever to complete." },
 * {..., 0 }, // ---------- table break -----------
 * {..., "Short options:" },
 * {..., "-s  \tShort." },
 * {..., "-q  \tQuick." }, ...
 *
 * // results in
 *
 * Long options:
 * --very-long-option              Does something long.
 * --ultra-super-mega-long-option  Takes forever to complete.
 * Short options:
 * -s  Short.
 * -q  Quick.
 *
 * // Without the table break it would be
 *
 * Long options:
 * --very-long-option              Does something long.
 * --ultra-super-mega-long-option  Takes forever to complete.
 * Short options:
 * -s                              Short.
 * -q                              Quick.
 * @endcode
 *
 * <b>Output methods:</b>
 *
 * Because TheLeanMeanC++Option parser is freestanding, you have to provide the means for
 * output in the first argument(s) to printUsage(). Because printUsage() is implemented as
 * a set of template functions, you have great flexibility in your choice of output
 * method. The following example demonstrates typical uses. Anything that's similar enough
 * will work.
 *
 * @code
 * #include <unistd.h>  // write()
 * #include <iostream>  // cout
 * #include <sstream>   // ostringstream
 * #include <cstdio>    // fwrite()
 * using namespace std;
 *
 * void my_write(const char* str, int size) {
 *   fwrite(str, size, 1, stdout);
 * }
 *
 * struct MyWriter {
 *   void write(const char* buf, size_t size) const {
 *      fwrite(str, size, 1, stdout);
 *   }
 * };
 *
 * struct MyWriteFunctor {
 *   void operator()(const char* buf, size_t size) {
 *      fwrite(str, size, 1, stdout);
 *   }
 * };
 * ...
 * printUsage(my_write, usage);    // custom write function
 * printUsage(MyWriter(), usage);  // temporary of a custom class
 * MyWriter writer;
 * printUsage(writer, usage);      // custom class object
 * MyWriteFunctor wfunctor;
 * printUsage(&wfunctor, usage);   // custom functor
 * printUsage(write, 1, usage);    // write() to file descriptor 1
 * printUsage(cout, usage);        // an ostream&
 * printUsage(fwrite, stdout, usage);  // fwrite() to stdout
 * ostringstream sstr;
 * printUsage(sstr, usage);        // an ostringstream&
 *
 * @endcode
 *
 * @par Notes:
 * @li the @c write() method of a class that is to be passed as a temporary
 *     as @c MyWriter() is in the example, must be a @c const method, because
 *     temporary objects are passed as const reference. This only applies to
 *     temporary objects that are created and destroyed in the same statement.
 *     If you create an object like @c writer in the example, this restriction
 *     does not apply.
 * @li a functor like @c MyWriteFunctor in the example must be passed as a pointer.
 *     This differs from the way functors are passed to e.g. the STL algorithms.
 * @li All printUsage() templates are tiny wrappers around a shared non-template implementation.
 *     So there's no penalty for using different versions in the same program.
 * @li printUsage() always interprets Descriptor::help as UTF-8 and always produces UTF-8-encoded
 *     output. If your system uses a different charset, you must do your own conversion. You
 *     may also need to change the font of the console to see non-ASCII characters properly.
 *     This is particularly true for Windows.
 * @li @b Security @b warning: Do not insert untrusted strings (such as user-supplied arguments)
 *     into the usage. printUsage() has no protection against malicious UTF-8 sequences.
 *
 * @param prn The output method to use. See the examples above.
 * @param usage the Descriptor[] array whose @c help texts will be formatted.
 * @param width the maximum number of characters per output line. Note that this number is
 *        in actual characters, not bytes. printUsage() supports UTF-8 in @c help and will
 *        count multi-byte UTF-8 sequences properly. Asian wide characters are counted
 *        as 2 characters.
 * @param last_column_min_percent (0-100) The minimum percentage of @c width that should be available
 *        for the last column (which typically contains the textual explanation of an option).
 *        If less space is available, the last column will be printed on its own line, indented
 *        according to @c last_column_own_line_max_percent.
 * @param last_column_own_line_max_percent (0-100) If the last column is printed on its own line due to
 *        less than @c last_column_min_percent of the width being available, then only
 *        @c last_column_own_line_max_percent of the extra line(s) will be used for the
 *        last column's text. This ensures an indentation. See example below.
 *
 * @code
 * // width=20, last_column_min_percent=50 (i.e. last col. min. width=10)
 * --3456789 1234567890
 *           1234567890
 *
 * // width=20, last_column_min_percent=75 (i.e. last col. min. width=15)
 * // last_column_own_line_max_percent=75
 * --3456789
 *      123456789012345
 *      67890
 *
 * // width=20, last_column_min_percent=75 (i.e. last col. min. width=15)
 * // last_column_own_line_max_percent=33 (i.e. max. 5)
 * --3456789
 *                12345
 *                67890
 *                12345
 *                67890
 * @endcode
 */
template<typename OStream>
void printUsage(OStream& prn, const Descriptor usage[], int width = 80, int last_column_min_percent = 50,
                int last_column_own_line_max_percent = 75)
{
  PrintUsageImplementation::OStreamWriter<OStream> write(prn);
  PrintUsageImplementation::printUsage(write, usage, width, last_column_min_percent, last_column_own_line_max_percent);
}

template<typename Function>
void printUsage(Function* prn, const Descriptor usage[], int width = 80, int last_column_min_percent = 50,
                int last_column_own_line_max_percent = 75)
{
  PrintUsageImplementation::FunctionWriter<Function> write(prn);
  PrintUsageImplementation::printUsage(write, usage, width, last_column_min_percent, last_column_own_line_max_percent);
}

template<typename Temporary>
void printUsage(const Temporary& prn, const Descriptor usage[], int width = 80, int last_column_min_percent = 50,
                int last_column_own_line_max_percent = 75)
{
  PrintUsageImplementation::TemporaryWriter<Temporary> write(prn);
  PrintUsageImplementation::printUsage(write, usage, width, last_column_min_percent, last_column_own_line_max_percent);
}

template<typename Syscall>
void printUsage(Syscall* prn, int fd, const Descriptor usage[], int width = 80, int last_column_min_percent = 50,
                int last_column_own_line_max_percent = 75)
{
  PrintUsageImplementation::SyscallWriter<Syscall> write(prn, fd);
  PrintUsageImplementation::printUsage(write, usage, width, last_column_min_percent, last_column_own_line_max_percent);
}

template<typename Function, typename Stream>
void printUsage(Function* prn, Stream* stream, const Descriptor usage[], int width = 80, int last_column_min_percent =
                    50,
                int last_column_own_line_max_percent = 75)
{
  PrintUsageImplementation::StreamWriter<Function, Stream> write(prn, stream);
  PrintUsageImplementation::printUsage(write, usage, width, last_column_min_percent, last_column_own_line_max_percent);
}

}
// namespace option

#endif /* OPTIONPARSER_H_ */