Skip to content
Transform.h 55.6 KiB
Newer Older
Luker's avatar
Luker committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H

namespace Eigen { 

namespace internal {

template<typename Transform>
struct transform_traits
{
  enum
  {
    Dim = Transform::Dim,
    HDim = Transform::HDim,
    Mode = Transform::Mode,
    IsProjective = (int(Mode)==int(Projective))
  };
};

template< typename TransformType,
          typename MatrixType,
          int Case = transform_traits<TransformType>::IsProjective ? 0
                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
                   : 2>
struct transform_right_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_left_product_impl;

template< typename Lhs,
          typename Rhs,
          bool AnyProjective = 
            transform_traits<Lhs>::IsProjective ||
            transform_traits<Rhs>::IsProjective>
struct transform_transform_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_construct_from_matrix;

template<typename TransformType> struct transform_take_affine_part;

template<int Mode> struct transform_make_affine;

} // end namespace internal

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Transform
  *
  * \brief Represents an homogeneous transformation in a N dimensional space
  *
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
  * \tparam _Dim the dimension of the space
  * \tparam _Mode the type of the transformation. Can be:
  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
  *                         where the last row is assumed to be [0 ... 0 1].
  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
  *                             without any assumption.
  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
  *                  These Options are passed directly to the underlying matrix type.
  *
  * The homography is internally represented and stored by a matrix which
  * is available through the matrix() method. To understand the behavior of
  * this class you have to think a Transform object as its internal
  * matrix representation. The chosen convention is right multiply:
  *
  * \code v' = T * v \endcode
  *
  * Therefore, an affine transformation matrix M is shaped like this:
  *
  * \f$ \left( \begin{array}{cc}
  * linear & translation\\
  * 0 ... 0 & 1
  * \end{array} \right) \f$
  *
  * Note that for a projective transformation the last row can be anything,
  * and then the interpretation of different parts might be sightly different.
  *
  * However, unlike a plain matrix, the Transform class provides many features
  * simplifying both its assembly and usage. In particular, it can be composed
  * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
  * and can be directly used to transform implicit homogeneous vectors. All these
  * operations are handled via the operator*. For the composition of transformations,
  * its principle consists to first convert the right/left hand sides of the product
  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
  * Of course, internally, operator* tries to perform the minimal number of operations
  * according to the nature of each terms. Likewise, when applying the transform
  * to points, the latters are automatically promoted to homogeneous vectors
  * before doing the matrix product. The conventions to homogeneous representations
  * are performed as follow:
  *
  * \b Translation t (Dim)x(1):
  * \f$ \left( \begin{array}{cc}
  * I & t \\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Rotation R (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * R & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *<!--
  * \b Linear \b Matrix L (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * L & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Affine \b Matrix A (Dim)x(Dim+1):
  * \f$ \left( \begin{array}{c}
  * A\\
  * 0\,...\,0\,1
  * \end{array} \right) \f$
  *-->
  * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * S & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Column \b point v (Dim)x(1):
  * \f$ \left( \begin{array}{c}
  * v\\
  * 1
  * \end{array} \right) \f$
  *
  * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
  * \f$ \left( \begin{array}{ccc}
  * v_1 & ... & v_n\\
  * 1 & ... & 1
  * \end{array} \right) \f$
  *
  * The concatenation of a Transform object with any kind of other transformation
  * always returns a Transform object.
  *
  * A little exception to the "as pure matrix product" rule is the case of the
  * transformation of non homogeneous vectors by an affine transformation. In
  * that case the last matrix row can be ignored, and the product returns non
  * homogeneous vectors.
  *
  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
  * vector transformation by making the vector homogeneous:
  * \code
  * m' = T * m.colwise().homogeneous();
  * \endcode
  * Note that there is zero overhead.
  *
  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
  * preprocessor token EIGEN_QT_SUPPORT is defined.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
  *
  * \sa class Matrix, class Quaternion
  */
template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Transform
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
  enum {
    Mode = _Mode,
    Options = _Options,
    Dim = _Dim,     ///< space dimension in which the transformation holds
    HDim = _Dim+1,  ///< size of a respective homogeneous vector
    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
  };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef DenseIndex Index;
  /** type of the matrix used to represent the transformation */
  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
  /** constified MatrixType */
  typedef const MatrixType ConstMatrixType;
  /** type of the matrix used to represent the linear part of the transformation */
  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
  /** type of read/write reference to the linear part of the transformation */
  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
  /** type of read reference to the linear part of the transformation */
  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
  /** type of read/write reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              MatrixType&,
                              Block<MatrixType,Dim,HDim> >::type AffinePart;
  /** type of read reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              const MatrixType&,
                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
  /** type of a vector */
  typedef Matrix<Scalar,Dim,1> VectorType;
  /** type of a read/write reference to the translation part of the rotation */
  typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
  /** type of a read reference to the translation part of the rotation */
  typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
  /** corresponding translation type */
  typedef Translation<Scalar,Dim> TranslationType;
  
  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
  /** The return type of the product between a diagonal matrix and a transform */
  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;

protected:

  MatrixType m_matrix;

public:

  /** Default constructor without initialization of the meaningful coefficients.
    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
  inline Transform()
  {
    check_template_params();
    internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
  }

  inline Transform(const Transform& other)
  {
    check_template_params();
    m_matrix = other.m_matrix;
  }

  inline explicit Transform(const TranslationType& t)
  {
    check_template_params();
    *this = t;
  }
  inline explicit Transform(const UniformScaling<Scalar>& s)
  {
    check_template_params();
    *this = s;
  }
  template<typename Derived>
  inline explicit Transform(const RotationBase<Derived, Dim>& r)
  {
    check_template_params();
    *this = r;
  }

  inline Transform& operator=(const Transform& other)
  { m_matrix = other.m_matrix; return *this; }

  typedef internal::transform_take_affine_part<Transform> take_affine_part;

  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline explicit Transform(const EigenBase<OtherDerived>& other)
  {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

    check_template_params();
    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
  }

  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
  template<typename OtherDerived>
  inline Transform& operator=(const EigenBase<OtherDerived>& other)
  {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
    return *this;
  }
  
  template<int OtherOptions>
  inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
  {
    check_template_params();
    // only the options change, we can directly copy the matrices
    m_matrix = other.matrix();
  }

  template<int OtherMode,int OtherOptions>
  inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
  {
    check_template_params();
    // prevent conversions as:
    // Affine | AffineCompact | Isometry = Projective
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    // prevent conversions as:
    // Isometry = Affine | AffineCompact
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
    };

    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
    {
      // We need the block expression because the code is compiled for all
      // combinations of transformations and will trigger a compile time error
      // if one tries to assign the matrices directly
      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
      makeAffine();
    }
    else if(OtherModeIsAffineCompact)
    {
      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
    }
    else
    {
      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
      // if OtherMode were Projective, the static assert above would already have caught it.
      // So the only possibility is that OtherMode == Affine
      linear() = other.linear();
      translation() = other.translation();
    }
  }

  template<typename OtherDerived>
  Transform(const ReturnByValue<OtherDerived>& other)
  {
    check_template_params();
    other.evalTo(*this);
  }

  template<typename OtherDerived>
  Transform& operator=(const ReturnByValue<OtherDerived>& other)
  {
    other.evalTo(*this);
    return *this;
  }

  #ifdef EIGEN_QT_SUPPORT
  inline Transform(const QMatrix& other);
  inline Transform& operator=(const QMatrix& other);
  inline QMatrix toQMatrix(void) const;
  inline Transform(const QTransform& other);
  inline Transform& operator=(const QTransform& other);
  inline QTransform toQTransform(void) const;
  #endif

  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) const */
  inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) */
  inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }

  /** \returns a read-only expression of the transformation matrix */
  inline const MatrixType& matrix() const { return m_matrix; }
  /** \returns a writable expression of the transformation matrix */
  inline MatrixType& matrix() { return m_matrix; }

  /** \returns a read-only expression of the linear part of the transformation */
  inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
  /** \returns a writable expression of the linear part of the transformation */
  inline LinearPart linear() { return LinearPart(m_matrix,0,0); }

  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
  inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
  inline AffinePart affine() { return take_affine_part::run(m_matrix); }

  /** \returns a read-only expression of the translation vector of the transformation */
  inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
  /** \returns a writable expression of the translation vector of the transformation */
  inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }

  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
    *
    * The right-hand-side \a other can be either:
    * \li an homogeneous vector of size Dim+1,
    * \li a set of homogeneous vectors of size Dim+1 x N,
    * \li a transformation matrix of size Dim+1 x Dim+1.
    *
    * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
    * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
    * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
    *
    * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
    *
    * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
    * or do your own cooking.
    *
    * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
    * \code
    * Affine3f A;
    * Vector3f v1, v2;
    * v2 = A.linear() * v1;
    * \endcode
    *
    */
  // note: this function is defined here because some compilers cannot find the respective declaration
  template<typename OtherDerived>
  EIGEN_STRONG_INLINE const typename OtherDerived::PlainObject
  operator * (const EigenBase<OtherDerived> &other) const
  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }

  /** \returns the product expression of a transformation matrix \a a times a transform \a b
    *
    * The left hand side \a other can be either:
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a general transformation matrix of size Dim+1 x Dim+1.
    */
  template<typename OtherDerived> friend
  inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }

  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
    *
    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
  inline const TransformTimeDiagonalReturnType
    operator * (const DiagonalBase<DiagonalDerived> &b) const
  {
    TransformTimeDiagonalReturnType res(*this);
    res.linear() *= b;
    return res;
  }

  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
    *
    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
  friend inline TransformTimeDiagonalReturnType
    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
  {
    TransformTimeDiagonalReturnType res;
    res.linear().noalias() = a*b.linear();
    res.translation().noalias() = a*b.translation();
    if (Mode!=int(AffineCompact))
      res.matrix().row(Dim) = b.matrix().row(Dim);
    return res;
  }

  template<typename OtherDerived>
  inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }

  /** Concatenates two transformations */
  inline const Transform operator * (const Transform& other) const
  {
    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
  }
  
  #ifdef __INTEL_COMPILER
private:
  // this intermediate structure permits to workaround a bug in ICC 11:
  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
  // 
  template<int OtherMode,int OtherOptions> struct icc_11_workaround
  {
    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
    typedef typename ProductType::ResultType ResultType;
  };
  
public:
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
    return ProductType::run(*this,other);
  }
  #else
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
  inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
  }
  #endif

  /** \sa MatrixBase::setIdentity() */
  void setIdentity() { m_matrix.setIdentity(); }

  /**
   * \brief Returns an identity transformation.
   * \todo In the future this function should be returning a Transform expression.
   */
  static const Transform Identity()
  {
    return Transform(MatrixType::Identity());
  }

  template<typename OtherDerived>
  inline Transform& scale(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& prescale(const MatrixBase<OtherDerived> &other);

  inline Transform& scale(const Scalar& s);
  inline Transform& prescale(const Scalar& s);

  template<typename OtherDerived>
  inline Transform& translate(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);

  template<typename RotationType>
  inline Transform& rotate(const RotationType& rotation);

  template<typename RotationType>
  inline Transform& prerotate(const RotationType& rotation);

  Transform& shear(const Scalar& sx, const Scalar& sy);
  Transform& preshear(const Scalar& sx, const Scalar& sy);

  inline Transform& operator=(const TranslationType& t);
  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
  inline Transform operator*(const TranslationType& t) const;

  inline Transform& operator=(const UniformScaling<Scalar>& t);
  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
  inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
  {
    Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
    res.scale(s.factor());
    return res;
  }

  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }

  template<typename Derived>
  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
  template<typename Derived>
  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
  template<typename Derived>
  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;

  const LinearMatrixType rotation() const;
  template<typename RotationMatrixType, typename ScalingMatrixType>
  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
  template<typename ScalingMatrixType, typename RotationMatrixType>
  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;

  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);

  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;

  /** \returns a const pointer to the column major internal matrix */
  const Scalar* data() const { return m_matrix.data(); }
  /** \returns a non-const pointer to the column major internal matrix */
  Scalar* data() { return m_matrix.data(); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
  inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
  {
    check_template_params();
    m_matrix = other.matrix().template cast<Scalar>();
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
  { return m_matrix.isApprox(other.m_matrix, prec); }

  /** Sets the last row to [0 ... 0 1]
    */
  void makeAffine()
  {
    internal::transform_make_affine<int(Mode)>::run(m_matrix);
  }

  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }

  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
  inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
  inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }


  #ifdef EIGEN_TRANSFORM_PLUGIN
  #include EIGEN_TRANSFORM_PLUGIN
  #endif
  
protected:
  #ifndef EIGEN_PARSED_BY_DOXYGEN
    static EIGEN_STRONG_INLINE void check_template_params()
    {
      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }
  #endif

};

/** \ingroup Geometry_Module */
typedef Transform<float,2,Isometry> Isometry2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Isometry> Isometry3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Isometry> Isometry2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Isometry> Isometry3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Affine> Affine2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Affine> Affine3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Affine> Affine2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Affine> Affine3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,AffineCompact> AffineCompact2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,AffineCompact> AffineCompact3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,AffineCompact> AffineCompact2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,AffineCompact> AffineCompact3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Projective> Projective2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Projective> Projective3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Projective> Projective2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Projective> Projective3d;

/**************************
*** Optional QT support ***
**************************/

#ifdef EIGEN_QT_SUPPORT
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              0, 0, 1;
  return *this;
}

/** \returns a QMatrix from \c *this assuming the dimension is 2.
  *
  * \warning this conversion might loss data if \c *this is not affine
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}

/** Initializes \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy();
  else
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy(),
                other.m13(), other.m23(), other.m33();
  return *this;
}

/** \returns a QTransform from \c *this assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
  else
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif

/*********************
*** Procedural API ***
*********************/

/** Applies on the right the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa prescale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt().noalias() = (linearExt() * other.asDiagonal());
  return *this;
}

/** Applies on the right a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa prescale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt() *= s;
  return *this;
}

/** Applies on the left the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa scale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
  return *this;
}

/** Applies on the left a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa scale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template topRows<Dim>() *= s;
  return *this;
}

/** Applies on the right the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa pretranslate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translationExt() += linearExt() * other;
  return *this;
}

/** Applies on the left the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa translate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  if(int(Mode)==int(Projective))
    affine() += other * m_matrix.row(Dim);
  else
    translation() += other;
  return *this;
}

/** Applies on the right the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * The template parameter \a RotationType is the type of the rotation which
  * must be known by internal::toRotationMatrix<>.
  *
  * Natively supported types includes:
  *   - any scalar (2D),
  *   - a Dim x Dim matrix expression,
  *   - a Quaternion (3D),
  *   - a AngleAxis (3D)
  *
  * This mechanism is easily extendable to support user types such as Euler angles,
  * or a pair of Quaternion for 4D rotations.
  *
  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
{
  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
  return *this;
}

/** Applies on the left the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * See rotate() for further details.
  *
  * \sa rotate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
{
  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
                                         * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/** Applies on the right the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa preshear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  VectorType tmp = linear().col(0)*sy + linear().col(1);
  linear() << linear().col(0) + linear().col(1)*sx, tmp;
  return *this;
}

/** Applies on the left the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa shear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
{
  linear().setIdentity();
  translation() = t.vector();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
{
  Transform res = *this;
  res.translate(t.vector());
  return res;
}

template<typename Scalar, int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
{
  m_matrix.setZero();
  linear().diagonal().fill(s.factor());
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
{
  linear() = internal::toRotationMatrix<Scalar,Dim>(r);
  translation().setZero();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
{
  Transform res = *this;
  res.rotate(r.derived());
  return res;
}