Skip to content
Transform.h 59.1 KiB
Newer Older
Luker's avatar
Luker committed
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H

namespace Eigen { 

namespace internal {

template<typename Transform>
struct transform_traits
{
  enum
  {
    Dim = Transform::Dim,
    HDim = Transform::HDim,
    Mode = Transform::Mode,
    IsProjective = (int(Mode)==int(Projective))
  };
};

template< typename TransformType,
          typename MatrixType,
          int Case = transform_traits<TransformType>::IsProjective ? 0
                   : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
Luker's avatar
Luker committed
                   : 2,
          int RhsCols = MatrixType::ColsAtCompileTime>
Luker's avatar
Luker committed
struct transform_right_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_left_product_impl;

template< typename Lhs,
          typename Rhs,
          bool AnyProjective = 
            transform_traits<Lhs>::IsProjective ||
            transform_traits<Rhs>::IsProjective>
struct transform_transform_product_impl;

template< typename Other,
          int Mode,
          int Options,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct transform_construct_from_matrix;

template<typename TransformType> struct transform_take_affine_part;

Luker's avatar
Luker committed
template<typename _Scalar, int _Dim, int _Mode, int _Options>
struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
{
  typedef _Scalar Scalar;
  typedef Eigen::Index StorageIndex;
  typedef Dense StorageKind;
  enum {
    Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
    RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
    ColsAtCompileTime = Dim1,
    MaxRowsAtCompileTime = RowsAtCompileTime,
    MaxColsAtCompileTime = ColsAtCompileTime,
    Flags = 0
  };
};

Luker's avatar
Luker committed
template<int Mode> struct transform_make_affine;

} // end namespace internal

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Transform
  *
  * \brief Represents an homogeneous transformation in a N dimensional space
  *
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
  * \tparam _Dim the dimension of the space
  * \tparam _Mode the type of the transformation. Can be:
  *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
  *                         where the last row is assumed to be [0 ... 0 1].
  *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
  *                             without any assumption.
  * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
  *                  These Options are passed directly to the underlying matrix type.
  *
  * The homography is internally represented and stored by a matrix which
  * is available through the matrix() method. To understand the behavior of
  * this class you have to think a Transform object as its internal
  * matrix representation. The chosen convention is right multiply:
  *
  * \code v' = T * v \endcode
  *
  * Therefore, an affine transformation matrix M is shaped like this:
  *
  * \f$ \left( \begin{array}{cc}
  * linear & translation\\
  * 0 ... 0 & 1
  * \end{array} \right) \f$
  *
  * Note that for a projective transformation the last row can be anything,
  * and then the interpretation of different parts might be sightly different.
  *
  * However, unlike a plain matrix, the Transform class provides many features
  * simplifying both its assembly and usage. In particular, it can be composed
  * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
  * and can be directly used to transform implicit homogeneous vectors. All these
  * operations are handled via the operator*. For the composition of transformations,
  * its principle consists to first convert the right/left hand sides of the product
  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
  * Of course, internally, operator* tries to perform the minimal number of operations
  * according to the nature of each terms. Likewise, when applying the transform
  * to points, the latters are automatically promoted to homogeneous vectors
  * before doing the matrix product. The conventions to homogeneous representations
  * are performed as follow:
  *
  * \b Translation t (Dim)x(1):
  * \f$ \left( \begin{array}{cc}
  * I & t \\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Rotation R (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * R & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *<!--
  * \b Linear \b Matrix L (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * L & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Affine \b Matrix A (Dim)x(Dim+1):
  * \f$ \left( \begin{array}{c}
  * A\\
  * 0\,...\,0\,1
  * \end{array} \right) \f$
  *-->
  * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * S & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Column \b point v (Dim)x(1):
  * \f$ \left( \begin{array}{c}
  * v\\
  * 1
  * \end{array} \right) \f$
  *
  * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
  * \f$ \left( \begin{array}{ccc}
  * v_1 & ... & v_n\\
  * 1 & ... & 1
  * \end{array} \right) \f$
  *
  * The concatenation of a Transform object with any kind of other transformation
  * always returns a Transform object.
  *
  * A little exception to the "as pure matrix product" rule is the case of the
  * transformation of non homogeneous vectors by an affine transformation. In
  * that case the last matrix row can be ignored, and the product returns non
  * homogeneous vectors.
  *
  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
  * vector transformation by making the vector homogeneous:
  * \code
  * m' = T * m.colwise().homogeneous();
  * \endcode
  * Note that there is zero overhead.
  *
  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
  * preprocessor token EIGEN_QT_SUPPORT is defined.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
Luker's avatar
Luker committed
  * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
Luker's avatar
Luker committed
  *
  * \sa class Matrix, class Quaternion
  */
template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Transform
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
  enum {
    Mode = _Mode,
    Options = _Options,
    Dim = _Dim,     ///< space dimension in which the transformation holds
    HDim = _Dim+1,  ///< size of a respective homogeneous vector
    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
  };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
Luker's avatar
Luker committed
  typedef Eigen::Index StorageIndex;
  typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
Luker's avatar
Luker committed
  /** type of the matrix used to represent the transformation */
  typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
  /** constified MatrixType */
  typedef const MatrixType ConstMatrixType;
  /** type of the matrix used to represent the linear part of the transformation */
  typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
  /** type of read/write reference to the linear part of the transformation */
  typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
  /** type of read reference to the linear part of the transformation */
  typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
  /** type of read/write reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              MatrixType&,
                              Block<MatrixType,Dim,HDim> >::type AffinePart;
  /** type of read reference to the affine part of the transformation */
  typedef typename internal::conditional<int(Mode)==int(AffineCompact),
                              const MatrixType&,
                              const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
  /** type of a vector */
  typedef Matrix<Scalar,Dim,1> VectorType;
  /** type of a read/write reference to the translation part of the rotation */
Luker's avatar
Luker committed
  typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
Luker's avatar
Luker committed
  /** type of a read reference to the translation part of the rotation */
Luker's avatar
Luker committed
  typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
Luker's avatar
Luker committed
  /** corresponding translation type */
  typedef Translation<Scalar,Dim> TranslationType;
  
  // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
  enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
  /** The return type of the product between a diagonal matrix and a transform */
  typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;

protected:

  MatrixType m_matrix;

public:

  /** Default constructor without initialization of the meaningful coefficients.
    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform()
Luker's avatar
Luker committed
  {
    check_template_params();
    internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
  }

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
Luker's avatar
Luker committed
  {
    check_template_params();
    m_matrix = other.m_matrix;
  }

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
Luker's avatar
Luker committed
  {
    check_template_params();
    *this = t;
  }
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
Luker's avatar
Luker committed
  {
    check_template_params();
    *this = s;
  }
  template<typename Derived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
Luker's avatar
Luker committed
  {
    check_template_params();
    *this = r;
  }

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other)
Luker's avatar
Luker committed
  { m_matrix = other.m_matrix; return *this; }

  typedef internal::transform_take_affine_part<Transform> take_affine_part;

  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
Luker's avatar
Luker committed
  {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

    check_template_params();
    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
  }

  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
Luker's avatar
Luker committed
  {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
      YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);

    internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
    return *this;
  }
  
  template<int OtherOptions>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
Luker's avatar
Luker committed
  {
    check_template_params();
    // only the options change, we can directly copy the matrices
    m_matrix = other.matrix();
  }

  template<int OtherMode,int OtherOptions>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
Luker's avatar
Luker committed
  {
    check_template_params();
    // prevent conversions as:
    // Affine | AffineCompact | Isometry = Projective
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    // prevent conversions as:
    // Isometry = Affine | AffineCompact
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
    };

    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
    {
      // We need the block expression because the code is compiled for all
      // combinations of transformations and will trigger a compile time error
      // if one tries to assign the matrices directly
      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
      makeAffine();
    }
    else if(OtherModeIsAffineCompact)
    {
      typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
      internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
    }
    else
    {
      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
      // if OtherMode were Projective, the static assert above would already have caught it.
      // So the only possibility is that OtherMode == Affine
      linear() = other.linear();
      translation() = other.translation();
    }
  }

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
Luker's avatar
Luker committed
  {
    check_template_params();
    other.evalTo(*this);
  }

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
Luker's avatar
Luker committed
  {
    other.evalTo(*this);
    return *this;
  }

  #ifdef EIGEN_QT_SUPPORT
  inline Transform(const QMatrix& other);
  inline Transform& operator=(const QMatrix& other);
  inline QMatrix toQMatrix(void) const;
  inline Transform(const QTransform& other);
  inline Transform& operator=(const QTransform& other);
  inline QTransform toQTransform(void) const;
  #endif
Luker's avatar
Luker committed
  
  EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
  EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); }
Luker's avatar
Luker committed

  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) const */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
Luker's avatar
Luker committed
  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
Luker's avatar
Luker committed

  /** \returns a read-only expression of the transformation matrix */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
Luker's avatar
Luker committed
  /** \returns a writable expression of the transformation matrix */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
Luker's avatar
Luker committed

  /** \returns a read-only expression of the linear part of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
Luker's avatar
Luker committed
  /** \returns a writable expression of the linear part of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
Luker's avatar
Luker committed

  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
Luker's avatar
Luker committed
  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
Luker's avatar
Luker committed

  /** \returns a read-only expression of the translation vector of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
Luker's avatar
Luker committed
  /** \returns a writable expression of the translation vector of the transformation */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
Luker's avatar
Luker committed

  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
    *
    * The right-hand-side \a other can be either:
    * \li an homogeneous vector of size Dim+1,
    * \li a set of homogeneous vectors of size Dim+1 x N,
    * \li a transformation matrix of size Dim+1 x Dim+1.
    *
    * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
    * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
    * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
    *
    * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
    *
    * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
    * or do your own cooking.
    *
    * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
    * \code
    * Affine3f A;
    * Vector3f v1, v2;
    * v2 = A.linear() * v1;
    * \endcode
    *
    */
  // note: this function is defined here because some compilers cannot find the respective declaration
  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
Luker's avatar
Luker committed
  operator * (const EigenBase<OtherDerived> &other) const
  { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }

  /** \returns the product expression of a transformation matrix \a a times a transform \a b
    *
    * The left hand side \a other can be either:
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a general transformation matrix of size Dim+1 x Dim+1.
    */
  template<typename OtherDerived> friend
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
Luker's avatar
Luker committed
    operator * (const EigenBase<OtherDerived> &a, const Transform &b)
  { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }

  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
    *
    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
Luker's avatar
Luker committed
    operator * (const DiagonalBase<DiagonalDerived> &b) const
  {
    TransformTimeDiagonalReturnType res(*this);
Luker's avatar
Luker committed
    res.linearExt() *= b;
Luker's avatar
Luker committed
    return res;
  }

  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
    *
    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  template<typename DiagonalDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
Luker's avatar
Luker committed
    operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
  {
    TransformTimeDiagonalReturnType res;
    res.linear().noalias() = a*b.linear();
    res.translation().noalias() = a*b.translation();
    if (Mode!=int(AffineCompact))
      res.matrix().row(Dim) = b.matrix().row(Dim);
    return res;
  }

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
Luker's avatar
Luker committed

  /** Concatenates two transformations */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
Luker's avatar
Luker committed
  {
    return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
  }
  
Luker's avatar
Luker committed
  #if EIGEN_COMP_ICC
Luker's avatar
Luker committed
private:
  // this intermediate structure permits to workaround a bug in ICC 11:
  //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
  //             (const Eigen::Transform<double, 3, 2, 0> &) const"
  //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
  // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
  //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
  // 
  template<int OtherMode,int OtherOptions> struct icc_11_workaround
  {
    typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
    typedef typename ProductType::ResultType ResultType;
  };
  
public:
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
  inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
    return ProductType::run(*this,other);
  }
  #else
  /** Concatenates two different transformations */
  template<int OtherMode,int OtherOptions>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
Luker's avatar
Luker committed
    operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
  {
    return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
  }
  #endif

  /** \sa MatrixBase::setIdentity() */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
Luker's avatar
Luker committed

  /**
   * \brief Returns an identity transformation.
   * \todo In the future this function should be returning a Transform expression.
   */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC static const Transform Identity()
Luker's avatar
Luker committed
  {
    return Transform(MatrixType::Identity());
  }

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC 
Luker's avatar
Luker committed
  inline Transform& scale(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& prescale(const MatrixBase<OtherDerived> &other);

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
  EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
Luker's avatar
Luker committed

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& translate(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);

  template<typename RotationType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& rotate(const RotationType& rotation);

  template<typename RotationType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& prerotate(const RotationType& rotation);

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
  EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
Luker's avatar
Luker committed

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
  
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
Luker's avatar
Luker committed
  
  EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
Luker's avatar
Luker committed

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC 
Luker's avatar
Luker committed
  inline Transform& operator=(const UniformScaling<Scalar>& t);
Luker's avatar
Luker committed
  
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
Luker's avatar
Luker committed
  
  EIGEN_DEVICE_FUNC
  inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
Luker's avatar
Luker committed
  {
Luker's avatar
Luker committed
    TransformTimeDiagonalReturnType res = *this;
Luker's avatar
Luker committed
    res.scale(s.factor());
    return res;
  }

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
Luker's avatar
Luker committed

  template<typename Derived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
Luker's avatar
Luker committed
  template<typename Derived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
Luker's avatar
Luker committed
  template<typename Derived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
Luker's avatar
Luker committed

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const;
Luker's avatar
Luker committed
  template<typename RotationMatrixType, typename ScalingMatrixType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
  template<typename ScalingMatrixType, typename RotationMatrixType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;

  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);

Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC
Luker's avatar
Luker committed
  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;

  /** \returns a const pointer to the column major internal matrix */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
Luker's avatar
Luker committed
  /** \returns a non-const pointer to the column major internal matrix */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
Luker's avatar
Luker committed

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
Luker's avatar
Luker committed
  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
Luker's avatar
Luker committed
  {
    check_template_params();
    m_matrix = other.matrix().template cast<Scalar>();
  }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
Luker's avatar
Luker committed
  { return m_matrix.isApprox(other.m_matrix, prec); }

  /** Sets the last row to [0 ... 0 1]
    */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC void makeAffine()
Luker's avatar
Luker committed
  {
    internal::transform_make_affine<int(Mode)>::run(m_matrix);
  }

  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
Luker's avatar
Luker committed
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
Luker's avatar
Luker committed
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }

  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
Luker's avatar
Luker committed
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
Luker's avatar
Luker committed
  EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
Luker's avatar
Luker committed
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }


  #ifdef EIGEN_TRANSFORM_PLUGIN
  #include EIGEN_TRANSFORM_PLUGIN
  #endif
  
protected:
  #ifndef EIGEN_PARSED_BY_DOXYGEN
Luker's avatar
Luker committed
    EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
Luker's avatar
Luker committed
    {
      EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
    }
  #endif

};

/** \ingroup Geometry_Module */
typedef Transform<float,2,Isometry> Isometry2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Isometry> Isometry3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Isometry> Isometry2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Isometry> Isometry3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Affine> Affine2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Affine> Affine3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Affine> Affine2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Affine> Affine3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,AffineCompact> AffineCompact2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,AffineCompact> AffineCompact3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,AffineCompact> AffineCompact2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,AffineCompact> AffineCompact3d;

/** \ingroup Geometry_Module */
typedef Transform<float,2,Projective> Projective2f;
/** \ingroup Geometry_Module */
typedef Transform<float,3,Projective> Projective3f;
/** \ingroup Geometry_Module */
typedef Transform<double,2,Projective> Projective2d;
/** \ingroup Geometry_Module */
typedef Transform<double,3,Projective> Projective3d;

/**************************
*** Optional QT support ***
**************************/

#ifdef EIGEN_QT_SUPPORT
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
Luker's avatar
Luker committed
  if (Mode == int(AffineCompact))
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy();
  else
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy(),
                0, 0, 1;
Luker's avatar
Luker committed
  return *this;
}

/** \returns a QMatrix from \c *this assuming the dimension is 2.
  *
  * \warning this conversion might loss data if \c *this is not affine
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}

/** Initializes \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
{
  check_template_params();
  *this = other;
}

/** Set \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
{
  check_template_params();
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy();
  else
    m_matrix << other.m11(), other.m21(), other.dx(),
                other.m12(), other.m22(), other.dy(),
                other.m13(), other.m23(), other.m33();
  return *this;
}

/** \returns a QTransform from \c *this assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode, int Options>
QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  if (Mode == int(AffineCompact))
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2));
  else
    return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
                      m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
                      m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
}
#endif

/*********************
*** Procedural API ***
*********************/

/** Applies on the right the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa prescale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt().noalias() = (linearExt() * other.asDiagonal());
  return *this;
}

/** Applies on the right a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa prescale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
Luker's avatar
Luker committed
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt() *= s;
  return *this;
}

/** Applies on the left the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa scale()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
Luker's avatar
Luker committed
  affine().noalias() = (other.asDiagonal() * affine());
Luker's avatar
Luker committed
  return *this;
}

/** Applies on the left a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa scale(Scalar)
  */
template<typename Scalar, int Dim, int Mode, int Options>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
Luker's avatar
Luker committed
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template topRows<Dim>() *= s;
  return *this;
}

/** Applies on the right the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa pretranslate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translationExt() += linearExt() * other;
  return *this;
}

/** Applies on the left the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa translate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  if(int(Mode)==int(Projective))
    affine() += other * m_matrix.row(Dim);
  else
    translation() += other;
  return *this;
}

/** Applies on the right the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * The template parameter \a RotationType is the type of the rotation which
  * must be known by internal::toRotationMatrix<>.
  *
  * Natively supported types includes:
  *   - any scalar (2D),
  *   - a Dim x Dim matrix expression,
  *   - a Quaternion (3D),
  *   - a AngleAxis (3D)
  *
  * This mechanism is easily extendable to support user types such as Euler angles,
  * or a pair of Quaternion for 4D rotations.
  *
  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
{
  linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
  return *this;
}

/** Applies on the left the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * See rotate() for further details.
  *
  * \sa rotate()
  */
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
{
  m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
                                         * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/** Applies on the right the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa preshear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  VectorType tmp = linear().col(0)*sy + linear().col(1);
  linear() << linear().col(0) + linear().col(1)*sx, tmp;
  return *this;
}

/** Applies on the left the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa shear()
  */
template<typename Scalar, int Dim, int Mode, int Options>
Luker's avatar
Luker committed
EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Luker's avatar
Luker committed
Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/

template<typename Scalar, int Dim, int Mode, int Options>