Skip to content
README.md 58.7 KiB
Newer Older
Luker's avatar
Luker committed
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

Each coefficient in the result is equal to the corresponding coefficient in the
'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
resulting coefficient will come from the 'else' tensor.


## Contraction

Tensor *contractions* are a generalization of the matrix product to the
multidimensional case.

    // Create 2 matrices using tensors of rank 2
    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{1, 2, 3}, {6, 5, 4}});
    Eigen::Tensor<int, 2> b(3, 2);
    a.setValues({{1, 2}, {4, 5}, {5, 6}});

    // Compute the traditional matrix product
    array<IndexPair<int>, 1> product_dims = { IndexPair(1, 0) };
    Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);

    // Compute the product of the transpose of the matrices
    array<IndexPair<int>, 1> transpose_product_dims = { IndexPair(0, 1) };
    Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);


## Reduction Operations

A *Reduction* operation returns a tensor with fewer dimensions than the
original tensor.  The values in the returned tensor are computed by applying a
*reduction operator* to slices of values from the original tensor.  You specify
the dimensions along which the slices are made.

The Eigen Tensor library provides a set of predefined reduction operators such
as ```maximum()``` and ```sum()``` and lets you define additional operators by
implementing a few methods from a reductor template.

### Reduction Dimensions

All reduction operations take a single parameter of type
```<TensorType>::Dimensions``` which can always be specified as an array of
ints.  These are called the "reduction dimensions."  The values are the indices
of the dimensions of the input tensor over which the reduction is done.  The
parameter can have at most as many element as the rank of the input tensor;
each element must be less than the tensor rank, as it indicates one of the
dimensions to reduce.

Each dimension of the input tensor should occur at most once in the reduction
dimensions as the implementation does not remove duplicates.

The order of the values in the reduction dimensions does not affect the
results, but the code may execute faster if you list the dimensions in
increasing order.

Example: Reduction along one dimension.

    // Create a tensor of 2 dimensions
    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{1, 2, 3}, {6, 5, 4}});
    // Reduce it along the second dimension (1)...
    Eigen::array<int, 1> dims({1 /* dimension to reduce */});
    // ...using the "maximum" operator.
    // The result is a tensor with one dimension.  The size of
    // that dimension is the same as the first (non-reduced) dimension of a.
    Eigen::Tensor<int, 1> b = a.maximum(dims);
    cout << "a" << endl << a << endl << endl;
    cout << "b" << endl << b << endl << endl;
    =>
    a
    1 2 3
    6 5 4

    b
    3
    6

Example: Reduction along two dimensions.

    Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
    a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
                  {7.0f, 6.0f, 5.0f, 4.0f},
                  {8.0f, 9.0f, 10.0f, 11.0f}},
                 {{12.0f, 13.0f, 14.0f, 15.0f},
                  {19.0f, 18.0f, 17.0f, 16.0f},
                  {20.0f, 21.0f, 22.0f, 23.0f}}});
    // The tensor a has 3 dimensions.  We reduce along the
    // first 2, resulting in a tensor with a single dimension
    // of size 4 (the last dimension of a.)
    // Note that we pass the array of reduction dimensions
    // directly to the maximum() call.
    Eigen::Tensor<float, 1, Eigen::ColMajor> b =
        a.maximum(Eigen::array<int, 2>({0, 1}));
    cout << "b" << endl << b << endl << endl;
    =>
    b
    20
    21
    22
    23

#### Reduction along all dimensions

As a special case, if you pass no parameter to a reduction operation the
original tensor is reduced along *all* its dimensions.  The result is a
scalar, represented as a zero-dimension tensor.

    Eigen::Tensor<float, 3> a(2, 3, 4);
    a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
                  {7.0f, 6.0f, 5.0f, 4.0f},
                  {8.0f, 9.0f, 10.0f, 11.0f}},
                 {{12.0f, 13.0f, 14.0f, 15.0f},
                  {19.0f, 18.0f, 17.0f, 16.0f},
                  {20.0f, 21.0f, 22.0f, 23.0f}}});
    // Reduce along all dimensions using the sum() operator.
    Eigen::Tensor<float, 0> b = a.sum();
    cout << "b" << endl << b << endl << endl;
    =>
    b
    276


### <Operation> sum(const Dimensions& new_dims)
### <Operation> sum()

Reduce a tensor using the sum() operator.  The resulting values
are the sum of the reduced values.

### <Operation> mean(const Dimensions& new_dims)
### <Operation> mean()

Reduce a tensor using the mean() operator.  The resulting values
are the mean of the reduced values.

### <Operation> maximum(const Dimensions& new_dims)
### <Operation> maximum()

Reduce a tensor using the maximum() operator.  The resulting values are the
largest of the reduced values.

### <Operation> minimum(const Dimensions& new_dims)
### <Operation> minimum()

Reduce a tensor using the minimum() operator.  The resulting values
are the smallest of the reduced values.

### <Operation> prod(const Dimensions& new_dims)
### <Operation> prod()

Reduce a tensor using the prod() operator.  The resulting values
are the product of the reduced values.

### <Operation> all(const Dimensions& new_dims)
### <Operation> all()
Reduce a tensor using the all() operator.  Casts tensor to bool and then checks
whether all elements are true.  Runs through all elements rather than
short-circuiting, so may be significantly inefficient.

### <Operation> any(const Dimensions& new_dims)
### <Operation> any()
Reduce a tensor using the any() operator.  Casts tensor to bool and then checks
whether any element is true.  Runs through all elements rather than
short-circuiting, so may be significantly inefficient.


### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)

Reduce a tensor using a user-defined reduction operator.  See ```SumReducer```
in TensorFunctors.h for information on how to implement a reduction operator.


## Scan Operations

A *Scan* operation returns a tensor with the same dimensions as the original
tensor. The operation performs an inclusive scan along the specified
axis, which means it computes a running total along the axis for a given
reduction operation.
If the reduction operation corresponds to summation, then this computes the
prefix sum of the tensor along the given axis.

Example:
dd a comment to this line

    // Create a tensor of 2 dimensions
    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{1, 2, 3}, {4, 5, 6}});
    // Scan it along the second dimension (1) using summation
    Eigen::Tensor<int, 2> b = a.cumsum(1);
    // The result is a tensor with the same size as the input
    cout << "a" << endl << a << endl << endl;
    cout << "b" << endl << b << endl << endl;
    =>
    a
    1 2 3
    6 5 4

    b
    1  3  6
    4  9 15

### <Operation> cumsum(const Index& axis)

Perform a scan by summing consecutive entries.

### <Operation> cumprod(const Index& axis)

Perform a scan by multiplying consecutive entries.


## Convolutions

### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)

Returns a tensor that is the output of the convolution of the input tensor with the kernel,
along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
which were part of the convolution will be reduced by the formula:
output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
The dimension sizes for dimensions that were not part of the convolution will remain the same.
Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
for the last dimension).

    // Compute convolution along the second and third dimension.
    Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
    Tensor<float, 2, DataLayout> kernel(2, 2);
    Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
    input.setRandom();
    kernel.setRandom();

    Eigen::array<ptrdiff_t, 2> dims({1, 2});  // Specify second and third dimension for convolution.
    output = input.convolve(kernel, dims);

    for (int i = 0; i < 3; ++i) {
      for (int j = 0; j < 2; ++j) {
        for (int k = 0; k < 6; ++k) {
          for (int l = 0; l < 11; ++l) {
            const float result = output(i,j,k,l);
            const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
                                   input(i,j+1,k+0,l) * kernel(1,0) +
                                   input(i,j+0,k+1,l) * kernel(0,1) +
                                   input(i,j+1,k+1,l) * kernel(1,1);
            VERIFY_IS_APPROX(result, expected);
          }
        }
      }
    }


## Geometrical Operations

These operations return a Tensor with different dimensions than the original
Tensor.  They can be used to access slices of tensors, see them with different
dimensions, or pad tensors with additional data.

### <Operation> reshape(const Dimensions& new_dims)

Returns a view of the input tensor that has been reshaped to the specified
new dimensions.  The argument new_dims is an array of Index values.  The
rank of the resulting tensor is equal to the number of elements in new_dims.

The product of all the sizes in the new dimension array must be equal to
the number of elements in the input tensor.

    // Increase the rank of the input tensor by introducing a new dimension
    // of size 1.
    Tensor<float, 2> input(7, 11);
    array<int, 3> three_dims{{7, 11, 1}};
    Tensor<float, 3> result = input.reshape(three_dims);

    // Decrease the rank of the input tensor by merging 2 dimensions;
    array<int, 1> one_dim{{7 * 11}};
    Tensor<float, 1> result = input.reshape(one_dim);

This operation does not move any data in the input tensor, so the resulting
contents of a reshaped Tensor depend on the data layout of the original Tensor.

For example this is what happens when you ```reshape()``` a 2D ColMajor tensor
to one dimension:

    Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
    a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
    Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
    Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
    cout << "b" << endl << b << endl;
    =>
    b
      0
    300
    100
    400
    200
    500

This is what happens when the 2D Tensor is RowMajor:

    Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
    a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
    Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
    Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
    cout << "b" << endl << b << endl;
    =>
    b
      0
    100
    200
    300
    400
    500

The reshape operation is a lvalue. In other words, it can be used on the left
side of the assignment operator.

The previous example can be rewritten as follow:

    Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
    a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
    Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
    Eigen::Tensor<float, 1, Eigen::ColMajor> b;
    b.reshape(two_dim) = a;
    cout << "b" << endl << b << endl;
    =>
    b
      0
    300
    100
    400
    200
    500

Note that "b" itself was not reshaped but that instead the assignment is done to
the reshape view of b.


### <Operation> shuffle(const Shuffle& shuffle)

Returns a copy of the input tensor whose dimensions have been
reordered according to the specified permutation. The argument shuffle
is an array of Index values. Its size is the rank of the input
tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
dimension of the output tensor equals to the size of the shuffle[i]-th
dimension of the input tensor. For example:

    // Shuffle all dimensions to the left by 1.
    Tensor<float, 3> input(20, 30, 50);
    // ... set some values in input.
    Tensor<float, 3> output = input.shuffle({1, 2, 0})

    eigen_assert(output.dimension(0) == 30);
    eigen_assert(output.dimension(1) == 50);
    eigen_assert(output.dimension(2) == 20);

Indices into the output tensor are shuffled accordingly to formulate
indices into the input tensor. For example, one can assert in the above
code snippet that:

    eigen_assert(output(3, 7, 11) == input(11, 3, 7));

In general, one can assert that

    eigen_assert(output(..., indices[shuffle[i]], ...) ==
                 input(..., indices[i], ...))

The shuffle operation results in a lvalue, which means that it can be assigned
to. In other words, it can be used on the left side of the assignment operator.

Let's rewrite the previous example to take advantage of this feature:

    // Shuffle all dimensions to the left by 1.
    Tensor<float, 3> input(20, 30, 50);
    // ... set some values in input.
    Tensor<float, 3> output(30, 50, 20);
    output.shuffle({2, 0, 1}) = input;


### <Operation> stride(const Strides& strides)

Returns a view of the input tensor that strides (skips stride-1
elements) along each of the dimensions.  The argument strides is an
array of Index values.  The dimensions of the resulting tensor are
ceil(input_dimensions[i] / strides[i]).

For example this is what happens when you ```stride()``` a 2D tensor:

    Eigen::Tensor<int, 2> a(4, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
    Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
    Eigen::Tensor<int, 2> b = a.stride(strides);
    cout << "b" << endl << b << endl;
    =>
    b
       0   200
     900  1100

It is possible to assign a tensor to a stride:
    Tensor<float, 3> input(20, 30, 50);
    // ... set some values in input.
    Tensor<float, 3> output(40, 90, 200);
    output.stride({2, 3, 4}) = input;


### <Operation> slice(const StartIndices& offsets, const Sizes& extents)

Returns a sub-tensor of the given tensor. For each dimension i, the slice is
made of the coefficients stored between offset[i] and offset[i] + extents[i] in
the input tensor.

    Eigen::Tensor<int, 2> a(4, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500},
                 {600, 700, 800}, {900, 1000, 1100}});
    Eigen::array<int, 2> offsets = {1, 0};
    Eigen::array<int, 2> extents = {2, 2};
    Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
    cout << "a" << endl << a << endl;
    =>
    a
       0   100   200
     300   400   500
     600   700   800
     900  1000  1100
    cout << "slice" << endl << slice << endl;
    =>
    slice
     300   400
     600   700


### <Operation> chip(const Index offset, const Index dim)

A chip is a special kind of slice. It is the subtensor at the given offset in
the dimension dim. The returned tensor has one fewer dimension than the input
tensor: the dimension dim is removed.

For example, a matrix chip would be either a row or a column of the input
matrix.

    Eigen::Tensor<int, 2> a(4, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500},
                 {600, 700, 800}, {900, 1000, 1100}});
    Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
    Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
    cout << "a" << endl << a << endl;
    =>
    a
       0   100   200
     300   400   500
     600   700   800
     900  1000  1100
    cout << "row_3" << endl << row_3 << endl;
    =>
    row_3
       600   700   800
    cout << "col_2" << endl << col_2 << endl;
    =>
    col_2
       100   400   700    1000

It is possible to assign values to a tensor chip since the chip operation is a
lvalue. For example:

    Eigen::Tensor<int, 1> a(3);
    a.setValues({{100, 200, 300}});
    Eigen::Tensor<int, 2> b(2, 3);
    b.setZero();
    b.chip(0, 0) = a;
    cout << "a" << endl << a << endl;
    =>
    a
     100
     200
     300
    cout << "b" << endl << b << endl;
    =>
    b
       100   200   300
         0     0     0


### <Operation> reverse(const ReverseDimensions& reverse)

Returns a view of the input tensor that reverses the order of the coefficients
along a subset of the dimensions.  The argument reverse is an array of boolean
values that indicates whether or not the order of the coefficients should be
reversed along each of the dimensions.  This operation preserves the dimensions
of the input tensor.

For example this is what happens when you ```reverse()``` the first dimension
of a 2D tensor:

    Eigen::Tensor<int, 2> a(4, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500},
                {600, 700, 800}, {900, 1000, 1100}});
    Eigen::array<bool, 2> reverse({true, false});
    Eigen::Tensor<int, 2> b = a.reverse(reverse);
    cout << "a" << endl << a << endl << "b" << endl << b << endl;
    =>
    a
       0   100   200
     300   400   500
     600   700   800
     900  1000  1100
    b
     900  1000  1100
     600   700   800
     300   400   500
       0   100   200


### <Operation> broadcast(const Broadcast& broadcast)

Returns a view of the input tensor in which the input is replicated one to many
times.
The broadcast argument specifies how many copies of the input tensor need to be
made in each of the dimensions.

    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500}});
    Eigen::array<int, 2> bcast({3, 2});
    Eigen::Tensor<int, 2> b = a.broadcast(bcast);
    cout << "a" << endl << a << endl << "b" << endl << b << endl;
    =>
    a
       0   100   200
     300   400   500
    b
       0   100   200    0   100   200
     300   400   500  300   400   500
       0   100   200    0   100   200
     300   400   500  300   400   500
       0   100   200    0   100   200
     300   400   500  300   400   500

### <Operation> concatenate(const OtherDerived& other, Axis axis)

TODO

### <Operation>  pad(const PaddingDimensions& padding)

Returns a view of the input tensor in which the input is padded with zeros.

    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{0, 100, 200}, {300, 400, 500}});
    Eigen::array<pair<int, int>, 2> paddings;
    paddings[0] = make_pair(0, 1);
    paddings[1] = make_pair(2, 3);
    Eigen::Tensor<int, 2> b = a.pad(paddings);
    cout << "a" << endl << a << endl << "b" << endl << b << endl;
    =>
    a
       0   100   200
     300   400   500
    b
       0     0     0    0
       0     0     0    0
       0   100   200    0
     300   400   500    0
       0     0     0    0
       0     0     0    0
       0     0     0    0


### <Operation>  extract_patches(const PatchDims& patch_dims)

Returns a tensor of coefficient patches extracted from the input tensor, where
each patch is of dimension specified by 'patch_dims'. The returned tensor has
one greater dimension than the input tensor, which is used to index each patch.
The patch index in the output tensor depends on the data layout of the input
tensor: the patch index is the last dimension ColMajor layout, and the first
dimension in RowMajor layout.

For example, given the following input tensor:

  Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
  tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
                    {4.0f, 5.0f, 6.0f, 7.0f},
                    {8.0f, 9.0f, 10.0f, 11.0f}});

  cout << "tensor: " << endl << tensor << endl;
=>
tensor:
 0   1   2   3
 4   5   6   7
 8   9  10  11

Six 2x2 patches can be extracted and indexed using the following code:

  Eigen::Tensor<float, 3, DataLayout> patch;
  Eigen::array<ptrdiff_t, 2> patch_dims;
  patch_dims[0] = 2;
  patch_dims[1] = 2;
  patch = tensor.extract_patches(patch_dims);
  for (int k = 0; k < 6; ++k) {
    cout << "patch index: " << k << endl;
    for (int i = 0; i < 2; ++i) {
      for (int j = 0; j < 2; ++j) {
        if (DataLayout == ColMajor) {
          cout << patch(i, j, k) << " ";
        } else {
          cout << patch(k, i, j) << " ";
        }
      }
      cout << endl;
    }
  }

This code results in the following output when the data layout is ColMajor:

patch index: 0
0 1
4 5
patch index: 1
4 5
8 9
patch index: 2
1 2
5 6
patch index: 3
5 6
9 10
patch index: 4
2 3
6 7
patch index: 5
6 7
10 11

This code results in the following output when the data layout is RowMajor:
(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).

patch index: 0
0 1
4 5
patch index: 1
1 2
5 6
patch index: 2
2 3
6 7
patch index: 3
4 5
8 9
patch index: 4
5 6
9 10
patch index: 5
6 7
10 11

### <Operation>  extract_image_patches(const Index patch_rows, const Index patch_cols,
                          const Index row_stride, const Index col_stride,
                          const PaddingType padding_type)

Returns a tensor of coefficient image patches extracted from the input tensor,
which is expected to have dimensions ordered as follows (depending on the data
layout of the input tensor, and the number of additional dimensions 'N'):

*) ColMajor
1st dimension: channels (of size d)
2nd dimension: rows (of size r)
3rd dimension: columns (of size c)
4th-Nth dimension: time (for video) or batch (for bulk processing).

*) RowMajor (reverse order of ColMajor)
1st-Nth dimension: time (for video) or batch (for bulk processing).
N+1'th dimension: columns (of size c)
N+2'th dimension: rows (of size r)
N+3'th dimension: channels (of size d)

The returned tensor has one greater dimension than the input tensor, which is
used to index each patch. The patch index in the output tensor depends on the
data layout of the input tensor: the patch index is the 4'th dimension in
ColMajor layout, and the 4'th from the last dimension in RowMajor layout.

For example, given the following input tensor with the following dimension
sizes:
 *) depth:   2
 *) rows:    3
 *) columns: 5
 *) batch:   7

  Tensor<float, 4> tensor(2,3,5,7);
  Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();

2x2 image patches can be extracted and indexed using the following code:

*) 2D patch: ColMajor (patch indexed by second-to-last dimension)
  Tensor<float, 5> twod_patch;
  twod_patch = tensor.extract_image_patches<2, 2>();
  // twod_patch.dimension(0) == 2
  // twod_patch.dimension(1) == 2
  // twod_patch.dimension(2) == 2
  // twod_patch.dimension(3) == 3*5
  // twod_patch.dimension(4) == 7

*) 2D patch: RowMajor (patch indexed by the second dimension)
  Tensor<float, 5, RowMajor> twod_patch_row_major;
  twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
  // twod_patch_row_major.dimension(0) == 7
  // twod_patch_row_major.dimension(1) == 3*5
  // twod_patch_row_major.dimension(2) == 2
  // twod_patch_row_major.dimension(3) == 2
  // twod_patch_row_major.dimension(4) == 2

## Special Operations

### <Operation> cast<T>()

Returns a tensor of type T with the same dimensions as the original tensor.
The returned tensor contains the values of the original tensor converted to
type T.

    Eigen::Tensor<float, 2> a(2, 3);
    Eigen::Tensor<int, 2> b = a.cast<int>();

This can be useful for example if you need to do element-wise division of
Tensors of integers.  This is not currently supported by the Tensor library
but you can easily cast the tensors to floats to do the division:

    Eigen::Tensor<int, 2> a(2, 3);
    a.setValues({{0, 1, 2}, {3, 4, 5}});
    Eigen::Tensor<int, 2> b =
        (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
    cout << "a" << endl << a << endl << endl;
    cout << "b" << endl << b << endl << endl;
    =>
    a
    0 1 2
    3 4 5

    b
    0 0 1
    1 2 2


### <Operation>     eval()

TODO


## Representation of scalar values

Scalar values are often represented by tensors of size 1 and rank 1. It would be
more logical and user friendly to use tensors of rank 0 instead. For example
Tensor<T, N>::maximum() currently returns a Tensor<T, 1>. Similarly, the inner
product of 2 1d tensors (through contractions) returns a 1d tensor. In the
future these operations might be updated to return 0d tensors instead.

## Limitations

*   The number of tensor dimensions is currently limited to 250 when using a
    compiler that supports cxx11. It is limited to only 5 for older compilers.
*   The IndexList class requires a cxx11 compliant compiler. You can use an
    array of indices instead if you don't have access to a modern compiler.
*   On GPUs only floating point values are properly tested and optimized for.
*   Complex and integer values are known to be broken on GPUs. If you try to use
    them you'll most likely end up triggering a static assertion failure such as
    EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)