Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
// We apply two rotations to have zj = 0;
// TODO deflation44 is still broken and not properly tested
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
{
using std::abs;
using std::sqrt;
using std::conj;
using std::pow;
RealScalar c = m_computed(firstColm+i, firstColm);
RealScalar s = m_computed(firstColm+j, firstColm);
RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
<< m_computed(firstColm + i-1, firstColm) << " "
<< m_computed(firstColm + i, firstColm) << " "
<< m_computed(firstColm + i+1, firstColm) << " "
<< m_computed(firstColm + i+2, firstColm) << "\n";
std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
<< m_computed(firstColm + i, firstColm+i) << " "
<< m_computed(firstColm + i+1, firstColm+i+1) << " "
<< m_computed(firstColm + i+2, firstColm+i+2) << "\n";
#endif
if (r==Literal(0))
{
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
return;
}
c/=r;
s/=r;
m_computed(firstColm + i, firstColm) = r;
m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
m_computed(firstColm + j, firstColm) = Literal(0);
JacobiRotation<RealScalar> J(c,-s);
if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
}// end deflation 44
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
{
using std::sqrt;
using std::abs;
const Index length = lastCol + 1 - firstCol;
Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
Diagonal<MatrixXr> fulldiag(m_computed);
VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
#endif
//condition 4.1
if (diag(0) < epsilon_coarse)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
#endif
diag(0) = epsilon_coarse;
}
//condition 4.2
for (Index i=1;i<length;++i)
if (abs(col0(i)) < epsilon_strict)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
#endif
col0(i) = Literal(0);
}
//condition 4.3
for (Index i=1;i<length; i++)
if (diag(i) < epsilon_coarse)
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
#endif
deflation43(firstCol, shift, i, length);
}
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "to be sorted: " << diag.transpose() << "\n\n";
#endif
{
// Check for total deflation
// If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
// Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
// First, compute the respective permutation.
Index *permutation = m_workspaceI.data();
{
permutation[0] = 0;
Index p = 1;
// Move deflated diagonal entries at the end.
for(Index i=1; i<length; ++i)
if(abs(diag(i))<considerZero)
permutation[p++] = i;
Index i=1, j=k+1;
for( ; p < length; ++p)
{
if (i > k) permutation[p] = j++;
else if (j >= length) permutation[p] = i++;
else if (diag(i) < diag(j)) permutation[p] = j++;
else permutation[p] = i++;
}
}
// If we have a total deflation, then we have to insert diag(0) at the right place
if(total_deflation)
{
for(Index i=1; i<length; ++i)
{
Index pi = permutation[i];
if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
permutation[i-1] = permutation[i];
else
{
permutation[i-1] = 0;
break;
}
}
}
// Current index of each col, and current column of each index
Index *realInd = m_workspaceI.data()+length;
Index *realCol = m_workspaceI.data()+2*length;
for(int pos = 0; pos< length; pos++)
{
realCol[pos] = pos;
realInd[pos] = pos;
}
for(Index i = total_deflation?0:1; i < length; i++)
{
const Index pi = permutation[length - (total_deflation ? i+1 : i)];
const Index J = realCol[pi];
using std::swap;
// swap diagonal and first column entries:
swap(diag(i), diag(J));
if(i!=0 && J!=0) swap(col0(i), col0(J));
// change columns
if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
//update real pos
const Index realI = realInd[i];
realCol[realI] = J;
realCol[pi] = i;
realInd[J] = realI;
realInd[i] = pi;
}
}
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
std::cout << " : " << col0.transpose() << "\n\n";
#endif
//condition 4.4
{
Index i = length-1;
while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
for(; i>1;--i)
if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
#endif
eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
}
}
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
for(Index j=2;j<length;++j)
assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
#endif
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
assert(m_naiveU.allFinite());
assert(m_naiveV.allFinite());
assert(m_computed.allFinite());
#endif
}//end deflation
#ifndef __CUDACC__
/** \svd_module
*
* \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
*
* \sa class BDCSVD
*/
template<typename Derived>
BDCSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
return BDCSVD<PlainObject>(*this, computationOptions);
}
#endif
} // end namespace Eigen
#endif