Newer
Older
/*
* Copyright (c) 2016, Luca Fulchir<luca@fulchir.it>, All rights reserved.
*
* This file is part of "libRaptorQ".
*
* libRaptorQ is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* libRaptorQ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and a copy of the GNU Lesser General Public License
* along with libRaptorQ. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdocumentation"
#pragma clang diagnostic ignored "-Wdocumentation-unknown-command"
#pragma clang diagnostic ignored "-Wold-style-cast"
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
#pragma clang diagnostic ignored "-Wsign-conversion"
#pragma clang diagnostic ignored "-Wconditional-uninitialized"
#pragma clang diagnostic ignored "-Wweak-vtables"
#include "../external/optionparser-1.4/optionparser.h"
#pragma clang diagnostic pop
#include "RaptorQ/RaptorQ_v1.hpp"
#include <cassert>
#include <cstdlib>
#include <fstream>
#include <future>
#include <iostream>
#include <map>
#include <memory>
#include <utility>
#include <vector>
//////
/// Command line parsing stuff. see "optionparser" documentation
//////
struct Arg: public option::Arg {
static option::ArgStatus Unknown(const option::Option& option, bool msg)
{
std::cerr << "Unknown option '" << option.name << "'\n";
return option::ARG_ILLEGAL;
}
static option::ArgStatus Numeric (const option::Option& option, bool msg)
{
int64_t res = -1;
if (option.arg != 0)
res = strtol(option.arg, &endptr, 10);
// NOTE: numeric arguments must be >= 0
if (endptr != option.arg && *endptr == 0 && res >= 0)
return option::ARG_OK;
if (msg) {
std::cerr << "ERR: Option '" << option.name <<
return option::ARG_ILLEGAL;
}
};
enum optionIndex { UNKNOWN, HELP, SYMBOLS, SYMBOL_SIZE, REPAIR, BYTES };
const option::Descriptor usage[] =
{
{HELP, 0, "h", "help", Arg::None, " -h --help\tThis help."},
{UNKNOWN, 0, "", "", Arg::Unknown, "ENCODE/DECODE options:"},
{SYMBOLS, 0, "s", "symbols", Arg::Numeric, " -s --symbols\t"
{SYMBOL_SIZE, 0, "w", "symbol-size", Arg::Numeric, " -w --symbol-size\t"
" bytes per symbol"},
{UNKNOWN, 0, "", "", Arg::Unknown, "ENCODE only options:"},
{REPAIR, 0, "r", "repair", Arg::Numeric, " -r --repair\t"
{UNKNOWN, 0, "", "", Arg::None, "DECODE only options:"},
{BYTES, 0, "b", "bytes", Arg::Numeric, " -b --bytes\t"
"Encoder output format/Decoder input format:\n"
"\t(uint32_t) block number\n"
"\t(uint32_t) symbol number\n"
"\tsymbol\n"},
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
{0,0,0,0,0,0}
};
// argument passing and data between input7output thread for the
// decoder
using iter_8 = std::vector<uint8_t>::iterator;
using Dec = RaptorQ__v1::Decoder<iter_8, iter_8>;
enum class Out_Status : uint8_t {
WORKING,
GRACEFUL_STOP,
ERROR,
EXITED,
};
struct write_out_args
{
std::map<size_t, std::unique_ptr<Dec>> *decoders;
std::mutex *mtx;
std::condition_variable *cond;
std::ostream *output;
Out_Status *status;
};
bool encode (int64_t symbol_size, uint16_t symbols, size_t repair,
std::istream *input, std::ostream *output);
bool decode (int64_t symbol_size, uint64_t bytes,
std::istream *input, std::ostream *output);
static void print_output (struct write_out_args args);
// thread function to wait for the decoders to finish decoding and
// print output. Only used when decoding
static void print_output (struct write_out_args args)
{
size_t current_block = 0;
uint16_t last_symbol = 0;
std::unique_lock<std::mutex> lock (*args.mtx, std::defer_lock);
while (*args.status == Out_Status::WORKING ||
*args.status == Out_Status::GRACEFUL_STOP) {
lock.lock();
auto dec_it = args.decoders->find (current_block);
if (dec_it == args.decoders->end()) {
args.cond->wait (lock);
lock.unlock();
continue;
}
auto dec = dec_it->second.get();
if (!dec->can_decode()) {
args.cond->wait (lock);
lock.unlock();
continue;
}
lock.unlock();
auto pair = dec->wait_sync();
if (pair.first == RaptorQ__v1::Error::NEED_DATA) {
if (*args.status == Out_Status::GRACEFUL_STOP) {
lock.lock();
*args.status = Out_Status::ERROR;
return;
}
continue;
}
if (pair.first != RaptorQ__v1::Error::NONE) {
// internal error or interrupted computation
lock.lock();
*args.status = Out_Status::ERROR;
return;
}
size_t sym_size = dec->symbol_size();
std::vector<uint8_t> buffer (sym_size);;
for (; last_symbol < pair.second; ++last_symbol) {
buffer.clear();
auto buf_start = buffer.begin();
auto to_write = dec->decode_symbol (buf_start, buffer.end(),
last_symbol);
if (to_write != 1) {
std::cerr << "ERR: partial or empty symbol from decoder\n";
abort();
}
args.output->write (reinterpret_cast<char *> (buffer.data()),
static_cast<int64_t>(sym_size));
}
if (last_symbol == dec->symbols()) {
lock.lock();
dec_it = args.decoders->find (current_block);
dec_it->second = nullptr;
lock.unlock();
++current_block;
last_symbol = 0;
}
}
lock.lock();
*args.status = Out_Status::EXITED;
}
bool decode (int64_t symbol_size, uint64_t bytes,
std::istream *input, std::ostream *output)
{
// decode
std::vector<uint8_t> buf (static_cast<size_t> (symbol_size));
std::map<size_t, std::unique_ptr<Dec>> decoders;
uint32_t block_number;
uint32_t symbol_number;
std::mutex mtx;
std::condition_variable cond;
Out_Status thread_status = Out_Status::WORKING;
struct write_out_args args;
args.decoders = &decoders;
args.mtx = &mtx;
args.cond = &cond;
args.output = output;
args.status = &thread_status;
std::thread write_out (print_output, args);
std::unique_lock<std::mutex> lock (mtx, std::defer_lock);
while (true) {
input->read (reinterpret_cast<char *> (&block_number),
sizeof(block_number));
int64_t read = input->gcount();
if (read > 0 && read != sizeof(block_number)) {
std::cerr << "ERR: not enough data to fill block number\n";
thread_status = Out_Status::ERROR;
return 1;
} else if (read == 0 || input->eof()) {
lock.lock();
if (thread_status == Out_Status::WORKING)
thread_status = Out_Status::GRACEFUL_STOP;
lock.unlock();
// wait for all blocks to be decoded.
// if one can not be decoded exit with error
write_out.join();
if (thread_status == Out_Status::EXITED)
return 0;
std::cerr << "ERR: not all blocks could be decoded\n";
return 1;
}
input->read (reinterpret_cast<char *> (&symbol_number),
sizeof(symbol_number));
read = input->gcount();
if (read != sizeof(symbol_number)) {
std::cerr << "ERR: not enough data to fill symbol number\n";
thread_status = Out_Status::ERROR;
write_out.join();
return 1;
}
lock.lock();
auto dec_it = decoders.find (block_number);
if (dec_it == decoders.end()) {
// add new decoder
bool success;
std::tie (dec_it, success) = decoders.emplace (std::make_pair (
block_number,
new Dec (bytes, static_cast<size_t> (symbol_size),
Dec::Report::PARTIAL_FROM_BEGINNING)));
if (!success) {
std::cerr << "ERR: Can not add decoder\n";
thread_status = Out_Status::ERROR;
write_out.join();
return 1;
}
}
auto dec = dec_it->second.get();
lock.unlock();
buf.clear();
buf.insert (buf.begin(), static_cast<size_t> (symbol_size), 0);
input->read (reinterpret_cast<char *> (buf.data()), symbol_size);
read = input->gcount();
if (read <= 0) {
std::cerr << "ERR: unexpected end";
thread_status = Out_Status::ERROR;
write_out.join();
return 1;
}
if (dec == nullptr) // received additional symbol for an
continue; // already decoded (and freed) block.
auto symbol_start = buf.begin();
auto err = dec->add_symbol (symbol_start, buf.end(), symbol_number);
if (err != RaptorQ__v1::Error::NONE) {
std::cerr << "ERR: error adding symbol\n";
thread_status = Out_Status::ERROR;
write_out.join();
return 1;
}
cond.notify_one();
}
}
// encoding function. manages both input and output
bool encode (int64_t symbol_size, uint16_t symbols, size_t repair,
std::istream *input, std::ostream *output)
{
std::vector<uint8_t> buf (static_cast<size_t> (symbol_size));
// Since we do not change the number of symbols for each block,
// we can reuse the encoder, so that less works will be done.
// just call clear_data() before feeding it the next block.
RaptorQ__v1::Encoder<iter_8, iter_8> encoder (symbols,
static_cast<size_t> (symbol_size));
auto future = encoder.compute();
RaptorQ__v1::Error enc_status = RaptorQ__v1::Error::INITIALIZATION;
uint32_t sym_num = 0;
uint32_t block_num = 0;
while (true) {
buf.clear();
buf.insert (buf.begin(), static_cast<size_t> (symbol_size), 0);
input->read (reinterpret_cast<char *> (buf.data()), symbol_size);
int64_t read = input->gcount();
if (read > 0) {
auto buf_start = buf.begin();
auto added = encoder.add_data (buf_start, buf.end());
if (added != buf.size()) {
std::cerr << "ERR: error adding symbol to the encoder\n";
return 1;
}
output->write (reinterpret_cast<char *> (&block_num),
sizeof(block_num));
output->write (reinterpret_cast<char *> (&sym_num),sizeof(sym_num));
output->write (reinterpret_cast<char *> (buf.data()), symbol_size);
++sym_num;
// we got EOF. Add padding data & symbols to fill the
// encoder.
std::vector<uint8_t> padding (bytes_left, 0);
auto it = padding.begin();
auto pad_added = encoder.add_data (it, padding.end());
assert (pad_added == padding.size());
assert (it == padding.end());
bytes_left = encoder.needed_bytes();
assert (bytes_left == 0);
// we use the same future multiple times, but it has a shared state
// only the first time. Do not wait() the other times.
if (future.valid()) {
future.wait();
enc_status = future.get();
}
if (enc_status != RaptorQ__v1::Error::NONE) {
std::cerr << "ERR: encoder should never fail!\n";
return 1;
}
std::vector<uint8_t> rep (static_cast<size_t> (symbol_size), 0);
for (uint32_t rep_id = sym_num; rep_id < (symbols + repair);
++rep_id) {
auto rep_start = rep.begin();
auto rep_length = encoder.encode (rep_start, rep.end(), rep_id);
// rep_length is actually the number of iterators written.
// but our iteerators are over uint8_t, so
// rep_length == bytes written
if (rep_length != static_cast<size_t> (symbol_size)) {
std::cerr << "ERR: wrong repair symbol size\n";
return 1;
}
output->write (reinterpret_cast<char *> (&block_num),
output->write (reinterpret_cast<char *> (&rep_id),
sizeof(rep_id));
output->write (reinterpret_cast<char *> (buf.data()),
symbol_size);
}
encoder.clear_data();
++block_num;
sym_num = 0;
}
}
}
int main (int argc, char **argv)
{
// manually parse first argument as command.
// then use optionparser
if (argc == 1 || (strncmp("encode", argv[1], 7) &&
strncmp("decode", argv[1], 7) &&
strncmp("banchmark", argv[1], 10))){
std::cerr << "ERR: need a command as first argument: "
"encode/decode/benchmark\n";
option::printUsage (std::cout, usage);
return 1;
}
// skip both program name and first command
// apparently "optionparser" treats every option as "unknown" once one
// unknown option has been found. :/
auto arg_num = (argc <= 2 ? 0 : argc - 2);
auto arguments = (argc <= 2 ? nullptr : argv + 2);
option::Stats stats (usage, arg_num, arguments);
std::vector<option::Option> options (stats.options_max);
std::vector<option::Option> buffer (stats.buffer_max);
const_cast<option::Option *> (options.data()),
const_cast<option::Option *> ( buffer.data()));
if (parse.error() || options[HELP].count() != 0) {
option::printUsage (std::cout, usage);
if (parse.error())
return 1;
return 0;
size_t repair = 0;
size_t bytes = 0;
const std::string command = std::string (argv[1]);
if (parse.nonOptionsCount() == 1) {
if (command.compare ("benchmark") != 0 || options[SYMBOLS].count() != 0
|| options[SYMBOL_SIZE].count() != 0
|| options[REPAIR].count() != 0
|| options[BYTES].count() != 0) {
option::printUsage (std::cout, usage);
return 1;
}
// TODO: launch benchmark
std::cerr << "Benchmarks not implemented yet\n";
return 0;
}
if (command.compare ("encode") == 0) {
if (options[BYTES].count() != 0) {
std::cerr << "ERR: encoder does not need \"--bytes\" parameter\n";
return 1;
}
if (options[REPAIR].count() != 1) {
std::cerr << "ERR: encoder requires one \"--repair\" parameter\n";
return 1;
}
repair = static_cast<size_t> (strtol(options[REPAIR].arg, nullptr,10));
if (repair <= 0) {
std::cerr << "ERR: Symbol_size must be positive\n";
return 1;
}
if (parse.nonOptionsCount() != 2) {
std::cerr << "ERR: Need to specify exactly one input and output\n";
option::printUsage (std::cout, usage);
return 1;
}
} else if (command.compare ("decode") == 0) {
if (options[BYTES].count() != 1) {
std::cerr << "ERR: decoder requires one \"--bytes\" parameter\n";
return 1;
}
bytes = static_cast<size_t> (strtol(options[BYTES].arg, nullptr, 10));
if (bytes <= 0) {
std::cerr << "ERR: bytes must be positive\n";
return 1;
}
if (options[REPAIR].count() != 0) {
std::cerr << "ERR: decoder does not need \"--repair\" parameter\n";
return 1;
}
if (parse.nonOptionsCount() != 2) {
std::cerr << "ERR: Need to specify exactly one input and output\n";
option::printUsage (std::cout, usage);
return 1;
}
} else {
std::cerr << "ERR: command \"" << command << "\" not understood\n";
return 1;
if (options[SYMBOLS].count() != 1 || options[SYMBOL_SIZE].count() != 1) {
std::cerr << "ERR: number of symbols and symbols size are required\n";
return 1;
}
const uint16_t symbols = static_cast<uint16_t> (strtol(options[SYMBOLS].arg,
nullptr, 10));
const int64_t symbol_size = static_cast<int64_t> (
strtol(options[SYMBOL_SIZE].arg, nullptr, 10));
if (symbols < 1 || symbols > 56403) {
std::cerr << "ERR: Symbols must be between 1 and 56403\n";
return 1;
}
if (symbol_size <= 0) {
std::cerr << "ERR: Symbol_size must be positive\n";
return 1;
}
const std::string input_file = parse.nonOption (0);
const std::string output_file = parse.nonOption (1);
// try to open input/output files
std::istream *input;
std::ostream *output;
std::ifstream in_file;
std::ofstream out_file;
in_file.open (input_file, std::ios_base::binary | std::ios_base::in);
if (!in_file.is_open()) {
std::cerr << "ERR: can't open input file\n";
return 1;
}
input = &in_file;
}
out_file.open (output_file, std::ios_base::binary | std::ios_base::out
| std::ios_base::trunc);
if (!out_file.is_open()) {
std::cerr << "ERR: can't open output file\n";
return 1;
}
output = &out_file;
}
if (command.compare ("encode") == 0) {
if (encode (symbol_size, symbols, repair, input, output))
return 0;
return 1;
} else {
if (decode(symbol_size, bytes, input, output))
return 0;
return 1;
}
}