Skip to content
Precode_Matrix_solver.cpp 16.3 KiB
Newer Older
Luker's avatar
Luker committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Copyright (c) 2015, Luca Fulchir<luca@fulchir.it>, All rights reserved.
 *
 * This file is part of "libRaptorQ".
 *
 * libRaptorQ is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * libRaptorQ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * and a copy of the GNU Lesser General Public License
 * along with libRaptorQ.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "Graph.hpp"
#include "multiplication.hpp"
#include "Precode_Matrix.hpp"
#include "Rand.hpp"

///////////////////
//
// Precode_Matrix
//
///////////////////

///
/// These methods are used to solve the system A * C = D, where we have
/// A and D. By doing this, we generate the intermediate symbols.
///

namespace RaptorQ {
namespace Impl {

// used in encoding, and by decoding
DenseMtx Precode_Matrix::intermediate (DenseMtx &D)
{
	// rfc 6330, pg 32
	// "c" and "d" are used to track row and columns exchange.
	// since Eigen should track row exchange without actually swapping
	// the data, we can call DenseMtx.row.swap without more overhead
	// than actually having "d". so we're left only with "c",
	// which is needed 'cause D does not have _params.L columns.

	std::vector<uint16_t> c;

	c.clear();
	c.reserve (_params.L);
	DenseMtx C, X = A;

	bool success;
	uint16_t i, u;
	for (i = 0; i < _params.L; ++i)
		c.emplace_back (i);

	std::tie (success, i, u) = decode_phase1 (X, D, c);
	if (!success)
		return C;
	success = decode_phase2 (D, i, u);
	if (!success)
		return C;
	// A now should be considered as being LxL from now
	decode_phase3 (X, D, i);
	X = DenseMtx ();	// free some memory, X is not needed anymore.
	decode_phase4 (D, i, u);
	decode_phase5 (D, i);
	// A now must be an LxL identity matrix: check it.
	/* CHECK DISABLED: phase4, phase5 do not modify A, as it's never readed
	 * again. So the Matrix is *not* an identity anymore.
	auto id_A = A.block (0, 0, _params.L, _params.L);
	for (uint16_t row = 0; row < id_A.rows(); ++row) {
		for (uint16_t col = 0; col < id_A.cols(); ++col) {
			if (static_cast<uint8_t> (id_A (row, col)) != (row == col ? 1 : 0))
				return C;
		}
	}
	*/

	C = DenseMtx (D.rows(), D.cols());
	for (i = 0; i < _params.L; ++i)
		C.row (c[i]) = D.row (i);

	return C;
}

// Used in decoding
// result is stored in D.
void Precode_Matrix::intermediate (DenseMtx &D, const Bitmask &mask,
										const std::vector<uint32_t> &repair_esi)
{
	decode_phase0 (mask, repair_esi);
	DenseMtx C = intermediate (D);

	if (C.rows() == 0) {
		// error somewhere
		D = C;
		return;
	}

	DenseMtx missing = DenseMtx (mask.get_holes(), D.cols());
	uint16_t holes = mask.get_holes();
	uint16_t row = 0;
	for (uint16_t hole = 0; hole < mask._max && holes > 0; ++hole) {
		if (mask.exists (hole))
			continue;
		DenseMtx ret = encode (C, hole);
		missing.row (row) = ret.row(0);
		++row;
	}
	D = missing;
}

void Precode_Matrix::decode_phase0 (const Bitmask &mask,
										const std::vector<uint32_t> &repair_esi)
{
	// D was built as follows:
	// - non-repair esi in their place
	// - for each hole in non-repair esi, put the *first available* repair esi
	//		in its place
	// - compact remaining repair esis


	// substitute missing symbols in A with appropriate repair line.
	// we substituted some symbols with repair ones (rfc 6330, phase1, pg35),
	// so we need to fix the corresponding rows in A, to say that a
	// repair symbol comes from a set of other symbols.

	const size_t padding = _params.K_padded - mask._max;

	uint16_t holes = mask.get_holes();
	auto r_esi = repair_esi.begin();

	for (uint16_t hole_from = 0; hole_from < _params.L && holes > 0;
																++hole_from) {
		if (mask.exists (hole_from))
			continue;
		// now hole_from is the esi hole, and hole_to is our repair sym.
		// put the repair dependancy in the hole row
		auto depends = _params.get_idxs (static_cast<uint16_t> (
															*r_esi + padding));
		++r_esi;
		// erease the line, mark the dependencies of the repair symbol.
		const uint16_t row = hole_from + _params.H + _params.S;
		for (uint16_t col = 0; col < A.cols(); ++col) {
			A (row, col) = 0;
		}
		for (auto isi: depends) {
			A (row, isi) = 1;
		}
		--holes;
	}
	// we put the repair symbols in the right places,
	// but we still need to do the same modifications to A also for repair
	// symbols. And those have been compacted.

	for (uint16_t rep_row = static_cast<uint16_t> (A.rows() - _repair_overhead);
												rep_row < A.rows(); ++rep_row) {
		auto depends = _params.get_idxs (static_cast<uint16_t> (
															*r_esi + padding));
		++r_esi;
		// erease the line, mark the dependencies of the repair symbol.
		for (uint16_t col = 0; col < A.cols(); ++col) {
			A (rep_row, col) = 0;
		}
		for (auto isi: depends) {
			A (rep_row, isi) = 1;
		}
	}
}

std::tuple<bool, uint16_t, uint16_t>
	Precode_Matrix::decode_phase1 (DenseMtx &X, DenseMtx &D,
													std::vector<uint16_t> &c)
{
	//rfc6330, page 33

	std::vector<std::pair<bool, size_t>> tracking;	// is_hdpc, row_degree

	// optimization: r_rows tracks the rows that can be chosen, and if the row
	// is added to the graph, track also the id of one of the nodes,
	// so that it will be easy to verify it the row represents an edge
	// between nodes of a maximum component (see rfc 6330, pg 33-34)
	std::vector<std::pair<uint16_t, uint16_t>> r_rows;

	tracking.reserve (static_cast<size_t> (A.rows()));

	uint16_t i = 0;
	uint16_t u = _params.P;

	auto V_tmp = A.block (0, 0, A.rows(), A.cols() - u);

	// track hdpc rows and original degree of each row
	for (uint16_t row = 0; row < V_tmp.rows(); ++row) {
		size_t original_degree = 0;
		for (uint16_t col = 0; col < V_tmp.cols(); ++col)
			original_degree += static_cast<uint8_t> (V_tmp (row, col));
		bool is_hdpc = (row >= _params.S && row < (_params.S + _params.H));
		tracking.emplace_back (is_hdpc, original_degree);;
	}

	while (i + u < _params.L) {
		auto V = A.block (i, i, A.rows() - i, (A.cols() - i) - u);
		uint16_t chosen = static_cast<uint16_t> (V.rows());
		// search for minium "r" (number of nonzero elements in row)
		uint16_t non_zero = static_cast<uint16_t> (V.cols()) + 1;
		bool only_two_ones = false;
		r_rows.clear();
		Graph G = Graph (static_cast<uint16_t> (V.cols()));

		// build graph, get minimum non_zero and track rows that
		// will be needed later
		for (uint16_t row = 0; row < V.rows(); ++row) {
			uint16_t non_zero_tmp = 0;
			// if the row is NOT HDPC and has two ones,
			// it represents an edge in a graph between the two columns with "1"
			uint16_t ones = 0;
			std::array<uint16_t, 2> ones_idx = {{0, 0}};
			bool next_row = false;	// true => non_zero_tmp > zero_tmp
			for (uint16_t col = 0; col < V.cols(); ++col) {
				if (static_cast<uint8_t> (V (row, col)) != 0) {
					if (++non_zero_tmp > non_zero) {
						next_row = true;
						break;
					}
				}
				if (static_cast<uint8_t> (V (row, col)) == 1) {
					// count the ones and update ones_idx at the same time
					if (++ones <= 2)
						ones_idx[ones - 1] = col;
				}
			}
			if (next_row || non_zero_tmp == 0)
				continue;
			// now non_zero >= non_zero_tmp, and both > 0

			// rationale & optimization, rfc 6330 pg 34
			// we need to track the rows that have the least number "r"
			// of non-zero elements.
			// if r == 2 and even just one row has the two elements to "1",
			// then we need to track only the rows with "1" in the two
			// non-zero elements.
			if (non_zero == non_zero_tmp) {
				// do not add if "only_two_ones && ones != 2"
				if (!only_two_ones || ones == 2)
					r_rows.emplace_back (row, ones_idx[0]);
			} else {
				// non_zero > non_zero_tmp)
				non_zero = non_zero_tmp;
				r_rows.clear();
				r_rows.emplace_back (row, ones_idx[0]);
			}

			if (ones == 2) {
				// track the maximum component in the graph
				if (non_zero == 2) {
					if (!tracking[row].first)	// if not HDPC row
						G.connect (ones_idx[0], ones_idx[1]);
					if (!only_two_ones) {
						// must keep only rows with two ones,
						// so delete the other ones.
						only_two_ones = true;
						r_rows.clear();
						r_rows.emplace_back (row, ones_idx[0]);
					}
				}
			}
		}
		if (non_zero == V.cols() + 1)
			return std::make_tuple (false, 0, 0);	// failure
		// search for r.
		if (non_zero != 2) {
			// search for row with minimum original degree.
			// Precedence to non-hdpc
			uint16_t min_row = static_cast<uint16_t> (V.rows());
			uint16_t min_row_hdpc = min_row;
			size_t min_degree = ~(static_cast<size_t> (0));	// max possible
			size_t min_degree_hdpc = min_degree;
			for (auto row_pair : r_rows) {
				uint16_t row = row_pair.first;
				if (tracking[row + i].first) {
					// HDPC
					if (tracking[row + i].second < min_degree_hdpc) {
						min_degree_hdpc = tracking[row].second;
						min_row_hdpc = row - i;
					}
				} else {
					// NON-HDPC
					if (tracking[row + i].second < min_degree) {
						min_degree = tracking[row].second;
						min_row = row;
					}
				}
			}
			if (min_row != V.rows()) {
				chosen = min_row;
			} else {
				chosen = min_row_hdpc;
			}
		} else {
			// non_zero == 2 => graph, else any r
			if (only_two_ones) {
				for (auto id : r_rows) {
					if (G.is_max (id.second)) {
						chosen = id.first;
						break;
					}
				}
			}
			if (chosen == V.rows()) {
				chosen = r_rows[0].first;
			}
		}	// done choosing

		// swap chosen row and first V row in A (not just in V)
		if (chosen != 0) {
			A.row (i).swap (A.row (chosen + i));
			X.row (i).swap (X.row (chosen + i));
			D.row (i).swap (D.row (chosen + i));
			std::swap (tracking[i], tracking[chosen + i]);
		}
		// column swap in A. looking at the first V row,
		// the first column must be nonzero, and the other non-zero must be
		// put to the last columns of V.
		if (static_cast<uint8_t> (V (0, 0)) == 0) {
			uint16_t idx = 1;
			for (; idx < V.cols(); ++idx) {
				if (static_cast<uint8_t> (V (0, idx)) != 0)
					break;
			}
			A.col (i).swap (A.col (i + idx));
			X.col (i).swap (X.col (i + idx));
			std::swap (c[i], c[i + idx]);	// rfc6330, pg32
		}
		uint16_t col = static_cast<uint16_t> (V.cols()) - 1;
		uint16_t swap = 1;	// at most we swapped V(0,0)
		// put all the non-zero cols to the last columns.
		for (; col > V.cols() - non_zero; --col) {
			if (static_cast<uint8_t> (V (0, col)) != 0)
				continue;
			while (swap < col && static_cast<uint8_t> (V (0, swap)) == 0)
				++swap;

			if (swap >= col)
				break;	// line full of zeros, nothing to swap
			// now V(0, col) == 0 and V(0, swap != 0. swap them
			A.col (col + i).swap (A.col (swap + i));
			X.col (col + i).swap (X.col (swap + i));
			std::swap (c[col + i], c[swap + i]);	//rfc6330, pg32
		}
		// now add a multiple of the row V(0) to the other rows of *A* so that
		// the other rows of *V* have a zero first column.
		for (uint16_t row = 1; row < V.rows(); ++row) {
			if (static_cast<uint8_t> (V (row, 0)) != 0) {
				const Octet multiple = V (row, 0) / V (0, 0);
				A.row (row + i) += A.row (i) * multiple;
				D.row (row + i) += D.row (i) * multiple;	//rfc6330, pg32
			}
		}

		// finally increment i by 1, u by (non_zero - 1) and repeat.
		++i;
		u += non_zero - 1;
	}

	return std::make_tuple (true, i, u);
}

bool Precode_Matrix::decode_phase2 (DenseMtx &D, const uint16_t i,
															const uint16_t u)
{
	// rfc 6330, pg 35

	// U_Lower parameters (u x u):
	const uint16_t row_start = i, row_end = static_cast<uint16_t> (_params.L);
	const uint16_t col_start = static_cast<uint16_t> (A.cols() - u);
	// try to bring U_Lower to Identity with gaussian elimination.
	// remember that all row swaps affect A as well, not just U_Lower

	for (uint16_t row = row_start; row < row_end; ++row) {
		// make sure the considered row has nonzero on the diagonal
		uint16_t row_nonzero = row;
		const uint16_t col_diag = col_start + (row - row_start);
		for (; row_nonzero < row_end; ++row_nonzero) {
			if (static_cast<uint8_t> (A (row_nonzero, col_diag)) != 0) {
				break;
			}
		}
		if (row_nonzero == row_end) {
			// U_Lower is square, we can return early (rank < u, not solvable)
			return false;
		} else if (row != row_nonzero) {
			A.row (row).swap (A.row (row_nonzero));
			D.row (row).swap (D.row (row_nonzero));
		}

		// U_Lower (row, row) != 0. make it 1.
		if (static_cast<uint8_t> (A (row, col_diag)) > 1) {
			const auto divisor = A (row, col_diag);
			A.row (row) /= divisor;
			D.row (row) /= divisor;
		}

		// make U_Lower and identity up to row
		for (uint16_t del_row = row_start; del_row < row_end; ++del_row) {
			if (del_row == row)
				continue;
			// subtrace row "row" to "del_row" enough times to make
			// row "del_row" start with zero. but row "row" now starts
			// with "1", so this is easy.
			const auto multiple = A (del_row, col_diag);
			if (static_cast<uint8_t> (multiple) != 0) {
				A.row (del_row) -= A.row (row) * multiple;
				D.row (del_row) -= D.row (row) * multiple;
			}
		}
	}
	// A should be resized to LxL.
	// we don't really care, as we should not gain that much.
	// A.conservativeResize (params.L, params.L);
	return true;
}

void Precode_Matrix::decode_phase3 (const DenseMtx &X, DenseMtx &D,
															const uint16_t i)
{
	// rfc 6330, pg 35:
	//	To this end, the matrix X is
	//	multiplied with the submatrix of A consisting of the first i rows of
	//	A. After this operation, the submatrix of A consisting of the
	//	intersection of the first i rows and columns equals to X, whereas the
	//	matrix U_upper is transformed to a sparse form.
	auto sub_X = X.block (0, 0, i, i);
	auto sub_A = A.block (0, 0, i, A.cols());
	sub_A = sub_X * sub_A;

	// Now fix D, too
	// Need a fresh copy. also, remember we changed the rows, so fix that
	// while we're at it.
	DenseMtx D_2 = D;

	for (uint16_t row = 0; row < sub_X.rows(); ++row) {
		D.row (row) = sub_X.row (row) * D_2.block (0,0, sub_X.cols(),
																	D.cols());
	}
}

void Precode_Matrix::decode_phase4 (DenseMtx &D, const uint16_t i,
															const uint16_t u)
{
	// rfc 6330, pg 35:
	// For each of the first i rows of U_upper, do the following: if the row
	// has a nonzero entry at position j, and if the value of that nonzero
	// entry is b, then add to this row b times row j of I_u

	// basically: zero out U_upper. we still need to update D each time, though.

	auto U_upper = A.block (0, A.cols() - u, i, u);
	for (uint16_t row = 0; row < U_upper.rows(); ++row) {
		for (uint16_t col = 0; col < U_upper.cols(); ++col) {
			// col == j
			auto multiple = U_upper (row, col);
			if (static_cast<uint8_t> (multiple) != 0) {
				// U_upper is never read again, so we can avoid some writes
				//U_upper (row, col) = 0;

				// "b times row j of I_u" => row "j" in U_lower.
				// aka: U_upper.rows() + j
				D.row (row) += D.row (
								static_cast<uint16_t> (U_upper.rows()) + col) *
																	multiple;
			}
		}
	}
}

void Precode_Matrix::decode_phase5 (DenseMtx &D, const uint16_t i)
{
	// rc 6330, pg 36
	for (uint16_t j = 0; j <= i; ++j) {
		if (static_cast<uint8_t> (A (j, j)) != 1) {
			// A(j, j) is actually never 0, by construction.
			const auto multiple = A (j, j);
			A.row (j) /= multiple;
			D.row (j) /= multiple;
		}
		for (uint16_t tmp = 0; tmp < j; ++tmp) {	//tmp == "l" in rfc6330
			const auto multiple = A (j, tmp);
			if (static_cast<uint8_t> (multiple) != 0) {
				A.row (j) += A.row (tmp) * multiple;
				D.row (j) += D.row (tmp) * multiple;
			}
		}
	}
}

DenseMtx Precode_Matrix::encode (const DenseMtx &C, const uint32_t ISI) const
{
	// Generate repair symbols. same algorithm as "get_idxs"
	// rfc6330, pg29

	DenseMtx ret;

	ret = DenseMtx (1, C.cols());
	Tuple t = _params.tuple (ISI);

	ret.row (0) = C.row (t.b);

	// FIXME: rfc: from 1. OpenRQ: from 0
	// if start from 1 => 99% failure
	// yet next loop starts from 1 (or 0, no change)
	for (uint16_t j = 0; j < t.d; ++j) {
		t.b = (t.b + t.a) % _params.W;
		ret.row (0) += C.row (t.b);
	}
	while (t.b1 >= _params.P)
		t.b1 = (t.b1 + t.a1) % _params.P1;

	ret.row (0) += C.row (_params.W + t.b1);
	for (uint16_t j = 1; j < t.d1; ++j) {
		t.b1 = (t.b1 + t.a1) % _params.P1;
		while (t.b1 >= _params.P)
			t.b1 = (t.b1 + t.a1) % _params.P1;
		ret.row (0) += C.row (_params.W + t.b1);
	}

	return ret;
}

}	// namespace RaptorQ
}	// namespace Impl