
Using libRaptorQ library

December 11, 2017

Abstract

libRaptorQ is a C++11 implementation of the RaptorQ
Forward Error Correction, as described in the RFC6330 .

The implementation was started as a university laboratory
project, and will be later used and included in Fenrir, the
maintainer’s master thesis.

This implementation is quite short (the core is ∼ 3k lines),
thanks to the chosen language and the use of external li-
braries for matrix handling (eigen3).

libRaptorQ is the only RaptorQ implementation in C++, in-
clude C hooks, and it is the only free (LGPL3) implementa-
tion of the rfc, except for the (apache2) java implementation,
OpenRQ , which is much bigger (∼ 46k) and slower.

Copyright (C) 2015, Luca Fulchir<luker@fenrirproject.org>

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

https://tools.ietf.org/html/rfc6330
https://www.fenrirproject.org

Contents

1 Contacts 3

2 Build & install 3

2.1 Get the source code 3

2.2 Dependencies . 4

2.3 Build & Install . 4

3 Working with RaptorQ 6

3.1 Theory (you really need this) 6

3.2 Blocks & Symbols 6

3.3 C++ interface . 7

3.4 Caching precomputations 8

3.4.1 The Encoder 8

3.4.2 Blocks . 10

3.4.3 Symbols . 11

3.4.4 The Decoder 11

3.5 C interface . 13

3.5.1 Common functions for (de/en)coding 14

3.5.2 Encoding . 14

3.5.3 Decoding . 16

4 GNU Free Documentation License 17

2

1 Contacts

The main development and dicussions on the project, along with
bug reporting, happens on the main website.

Mailing lists are available at https://www.fenrirproject.org/listsMailing Lists
The two mailing lists are for development and announcements, but
due to the low traffic of the development mailing list, it can also
be used by users for questions on the project.

Since there are not many developers for now, the main irc channelIRC
is #fenrirproject on freenode

2 Build & install

2.1 Get the source code

Although things seems to work, no stable release has been released
yet, as of December 11, 2017.

This means you can only check this out with git.

To check out the repository:

$ git clone https://github.com/LucaFulchir/libRaptorQ.git

You can also get it from our main server:

$ git clone https://www.fenrirproject.org/Luker/libRaptorQ.git

Once you have cloned it, it’s always a good thing to check theGPG verification:
repository gpg signatures, so you can import my key with:

$ gpg --keyserver pgp.mit.edu --recv-key 7393DAD255BEB5751DBDA04AB11CD823BA278C85

Now you have the source, and the key, it’s enough to check the
signature of the last commit:

$ git log -n 1 --show-signature

The important part is that you get something like this:

gpg: Signature made Mon 11 Dec 2017 21:55:28 CET

gpg: using RSA key 8F7474044095B405D0F042F0A2CCA134BC7C8572

gpg: Good signature from "Luca Fulchir <luker@fenrirproject.org>" [unknown]

gpg: aka "Luca Fulchir <luca@fulchir.it>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 7393 DAD2 55BE B575 1DBD A04A B11C D823 BA27 8C85

And as long as you got the right key, and you find the ”gpg: Good
signature” string, you can be sure you have the right code.

3

https://www.fenrirproject.org/Luker/libRaptorQ
https://www.fenrirproject.org/lists

2.2 Dependencies

libRaptorQ has 3 dependencies:

Eigen3 : This is used for matrix manipulation, which is a big part of
RaptorQ.

lz4 : Used to compress cached precomputations.

git : This is used not only to get the source, but also by the build
system. We get the last git commit id and feed it to clang
or gcc as seed for their internal random number generator.
This makes it possible to have reproducible builds.

All dependencies are included in the sources, so you do not need
to download and compile them.
Eigen3 is only needed at build time, so there is no need to download
it again. we use the 3.2.8 version.
LZ4 is included as a git submodule. if you do not have it, run:

$ git submodule init

$ git submodule update

and LZ4 will be build statically in the library (it will not be in-
stalled on the system)

2.3 Build & Install

libRaptorQ uses the cMake build system, so things are fairly stan-
dard:

$ cd libRaptorQ.git

$ mkdir build

$ cmake ../

$ make -j 4

By default, the libRaptorQ project tries to have deterministic builds.
This means that if you compile things twice, or with two different
computers, the hash of the resulting library will be the same, pro-
vided that the same compiler (clang, gcc 4.8, gcc 4.9 etc) was used.
Currently the only exception is the clang compiler with the PRO-
FILING option enabled, and this will not likely be solved.

There are lots of options, you can use in cmake. As always, you
can change them by adding “-Dcmake option=cmake value”
when calling cmake.

You can always use the cmake-gui or ccmake commands to have
the list of possible options.

The ones we recognize are:

LTO : ON/OFF. Default:ON. Enables Link Time Optimizatios for
clang or gcc. Makes libraries smaller and better optimized.

4

PROFILING : ON/OFF. Default:ON. Profiling compiles everything once,
then runs a test to see which code paths are used more, and
then recompiles everything again, but making sure that the
binary is optimized for those paths. Works with clang and
gcc. Provides a slight speedup.

CMAKE C COMPILER : gcc and clang are directly supported. other should work, too.
This is only used if you want to build the C example.

CMAKE CXX COMPILER : g++, clang++ are directly supported. other should work,
too.

CLANG STDLIB : use clang’s libc++ standard library. Only available with
clang.

CMAKE BUILD TYPE : Type of build. you can choose between “Debug”, “Release”,
“MinSizeRel” or “RelWithDebInfo”

CMAKE INSTALL PREFIX : Default to /usr/local. Change it to fit your distribution
guidelines.

Then you can build everything by running:

$ make -j 4

Of course, you can configure the number of parallel jobs (the -j
parameter) to be what you need.

The following optional targets are also supported:Optional make targets:

$ make docs tests examples

$ make everything

The “docs” target builds this document, but you need latex with
the refman style. The tests are only useful to check perfromance
of rfc compliance right now. “examples” compiles the C and C++
examples, which will not be installed.

The installation process is very simple:Install:

$ make install DESTDIR=...

You can change the DESTDIR parameter to fit your distribution
guidelines.

5

3 Working with RaptorQ

3.1 Theory (you really need this)

To be able to work with liRaptorQ, you must first understand how
the RaptorQ algorithms works. We won’t go into the details, but
just what you need to be able to tune the algorithm to your needs.

Fountain codes are a special Forward-Error-Correcting code class,Fountain codes:
which characteristic is simple: if you want to send K packets, you
actually send K+X packets, and the receiver only needs to get any
K packets to be able to reconstruct your data. The number X of
overhead packets can be as big as you need (theoretically infinite),
so you can tune it to be slightly higher than the expected packet
loss.

RaptorQ is also a systematic code. This means that those first KSystematic codes:
packets are the input as-is (source symbols), and the X packets
(repair symbols) have the information needed to recover any of
the lost source packets. This has the big advantage of avoiding any
kind of time and memory consuming decoding if there is no packet
loss during the transmission.

The RaptorQ algorithm is often presented as having a linear timeComplexity:
encoder and decoder. This is both false and misleading. Generat-
ing the source or repair symbols from the intermediate symbols has
linear complexity. Generating the intermediate symbols has cubic
complexity on the number of symbols. Which is a completely dif-
ferent thing. It is still very quick. On a core i7, 2.4Ghz, you need
to wait 0.4ms for 10 symbols, 280ms for 1.000 symbols, but it can
take an hour for 27.000 symbols. RaptorQ handles up to 56.403
symbols.

libRaptorQ can work with big matrices that take a lot of time toCaching
compute. For this reason the matrices can be saved once they have
been computed the first time. libRaptorQ uses a shared and a
local cache. In both cases the matrix is compressed with LZ4.
Shared cache uses shared memory and is thus shared with all pro-
cesses that use the save version of libRaptorQ. Local cache is only
local to the same process.

3.2 Blocks & Symbols

To understand how to properly use and tune libRaptorQ, you first
need to understand how RaptorQ handles its inputs, outputs, and
what the time and memory constraints are.

RaptorQ needs to have the whole input you want to send before itInput sequencing:
can start working.
This means that it might be a little more difficult to use in live-
streaming contexts, or where you need real-time data, but libRap-
torQ will have options to facilitate usage even in those contexts.

6

Once you have the whole input, RaptorQ divides it into blocks.
Each block is encoded and decoded independently and will be di-
vided into symbols. Each symbol should be transmitted sepa-
rately in its own packet (if you are on the network).

Each input can have up to 256 blocks, each block can have up toSizes:
56.403 symbols, and each symbol can have up to 216 − 1 byteslong.
This gives a maximum files size of almost 881 GB (946270874880
bytes to be exact)

An other feature of RaptorQ is to automatically provide some in-Interleaving:
terleaving of the input data before transmitting it. This means
that one symbol will not represent one sequential chunk of your
input data, but more likely it’s the concatenation of different sub-
symbols. The size of the subsymbol must thus be a fraction of
the symbol size. This feature is not used if you set the size of the
subsymbol to the size of symbol.

Memory and time requirements are to be considered, though, asMemory and Time:
RaptorQ needs to run a cubic algorithm on matrix of size K ∗K,
where K is the number of symbols in each block.
The algorithm needs to keep in memory two of these matrices, al-
though most of the work is done on only one.
This is actually a lot. More benchmarks and optimizations will
come later, for now remember that with 10 symbols it takes some-
thing like 0.4ms on a core i7 2.4GHZ, 280ms with 1000 symbols,
and up to an hour with 27.000 symbols.

3.3 C++ interface

To use the C++ interface you only need to include the Rap-
torQ.hpp header, and link libRaptorQ and your threading li-
brary (usually libpthread).

To provide grater flexibility, the whole library uses iterators to read
your data, and to write the data onto your data structures.
This means that a big part of the library is a template, which
adapts to the alignment of the data in the data structures you use.

There are two main classes you will use:Templates

template <typename Rnd_It, typename Fwd_It>

class Encoder

template <typename In_It, typename Fwd_It>

class Decoder

As you might guess, the classes for the encoder and decoder take
two template parameters.
For the Encoder, the first parameter MUST be a random access
iterator to the input data, and the second parameter is an forward
iterator. The random access iterator will be used to scan your input

7

data, and perform an interleaving (if you did not set the same size
the symbol and to the subsymbol). The forward iterator will be
used to write the data to your structure.
The same is done for the Decoder, but we do not need to do any
interleaving on the input, so the first iterator can be just an input
iterator, and nothing more.

3.4 Caching precomputations

libRaptorQ can now cache the most used matrices for a quicker
reference.
There are two level of caching: local and global.

Global caching will cache precomputed matrices for all programs
who use your version of libRaptorQ in the system. This uses shared
memory to store the matrices. The shared memory is automati-
cally increased to the maximum size any program requires, and
automatically scaled down once the program is not being executed
anymore.

Local caching instead works only in the program, and is not shared
with any other application. Once the shared cache is checked, local
caches is checked. The cache can be scaled up or down as needed
dynamically.

shared cache size : Input: const uint64 t shared cache
return: uint64 t
Set the maximum shared cache size for this process. Default:
0 (do not use shared cache)

local cache size : const uint64 t local cache
return: bool
Set the local cache size. returns false on error.

get shared cache size() : return: uint64 t
get the size of our shared memory requirement. NOTE: the
actual size might be larger, since other processes might have
requested more

get local cache size() : return: uint64 t
get the size of our local cache

3.4.1 The Encoder

You can instantiate an encoder for example by doing:

std : : vector<u int32 t> input , output ;
. . .
us ing T i t = typename std : : vector<u int32 t > : : i t e r a t o r ;
RaptorQ : : Encoder<T it , T it> enc (input . begin () ,

input . end () ,
4 , 1444 , 10000)

8

This will create an Encoder that works on vectors of unsigned 32
bit integers for both input and output, that will create symbols
of size 1444 bytes, interleaving your input every 4 bytes, and try
to work with big number of symbols per blocks (TODO: explain
memory requirements)

The available methods for the encoder are the following:

operator bool() : return:bool
False if constructor parameters did not make sense. Else true.

OTI Common() : return: OTI Common Data, aka uint64 t.
Keeps total file size and symbol size. You need to send
this to the receiver, so that it will be able to properly decode
the data.

OTI Scheme Specific Data() : return: OTI Scheme Specific Data, aka uint32 t.
Keeps number of source blocks, sub blocks, and align-
ment. As for the OTI Common Data, you need to send this
to the receiver to be able to properly decode the data.

encode : Input: Fwd It &output, const Fwd It end, const uint32 t
esi, const uint8 t sbn.
return:uint64 t.
Take as input the iterators to the data structure into where
we have to save the encoded data, the Encoding Symbol
Id and the Source Block Number. As you are writing
in C++, you probably want to use the iterators begin/end,
though. Returns the number of written iterators (NOT the
bytes)

encode : Input: Fwd It &output, const Fwd It end, const uint32 t
id.
return:uint64 t.
Exactly as before, but the id contains both the source block
number and the encoding symbol id

begin() : return: Block Iterator¡Rnd It, Fwd It¿
This returns an iterator to the blocks in which RaptorQ di-
vided the input data. See later to understand how to use
it.

end() : return: const Block Iterator¡Rnd It, Fwd It¿
This returns an iterator to the end of the blocks in which
RaptorQ divided the input data. See later to understand
how to use it.

precompute : Input:const uint8 t threads, const bool background
return: void
Do the work of computing all different blocks in multithread.

9

If background is true, then return immediately, else return
only when the job is done.
If threads is 0, try to guess the maximum threads from the
number of available cpus.

precompute max memory : return: size t
Each precomputation can take a lot of memory, depending
on the configuration, so you might want to limit the number
of precomputations run in parallel depending on the memory
used. This method returns the amount of memory taken by
ONE precomputation.

free : Input: const uint8 t sbn
return: void
Each block takes some memory, (a bit more than symbols ∗
symbolsize), so once you are done sending source and repair
symbols for one block, you might want to free the memory of
that block.

blocks() : return: uint8 t The number of blocks.

block size() : Input: const uint8 t sbn
return: uint32 t
The block size, in bytes. Each block can have different sym-
bols and thus different size.

symbol size() : return: uint16 t The size of a symbol.

symbols : Input:uint8 t sbn
return: uint16 t
The number of symbols in a specific block. different blocks
can have different symbols.

max repair : Input: const uint8 t sbn)
return: uint32 t
The maximum amount of repair symbols that you can gener-
ate. Something less than 224, but the exact number depends
on the number of symbols in a block

3.4.2 Blocks

With the begin()/end() calls you get Input iterators to the blocks.
a Block is has the following type:

template <typename Rnd It , typename Fwd It>
c l a s s Block

and exposes the 4 following methods:

begin source : return: Symbol Iterator

10

end source : return: Symbol Iterator

begin repair : return: Symbol Iterator

end repair : Input: const uint32 t max repair
return: Symbol Iterator

max repair : return:uint32 t

symbols : return: uint16 t

block size : return: uint32 t

As the names explain, you will get an iterator to the symbols in
the block. As the number of repair symbols can vary, for now you
get two separate begin/ends, so that you can check when you sent
the source symbols, and how many repair symbols you send.
The other functions are helpers for the details of the block.

3.4.3 Symbols

Finally, through the Symbol Iterator Input Iterator we get the
Symbol class:

template <typename Rnd It , typename Fwd It>
c l a s s Symbol

which exposes the 2 methods we need to get the symbol data:

operator* : Input:Fwd It &start, const Fwd It end
return: uint64 t
takes a forward iterator, and fill it with the symbol data.
returns the number of written iterators.

id() : return: uint32 t
return the id (sbn + esi) of this symbol, that you need to
include in every packet you send, before the symbols.

3.4.4 The Decoder

The decoder is a bit simpler than the encoder.

Theere are two constructors for the Decoder:

std : : vector<u int32 t> input , output ;
us ing T i t = typename std : : vector<u int32 t > : : i t e r a t o r ;
RaptorQ : : Decoder<T it , T it> dec (

const OTI Common Data common ,
const OTI Scheme Speci f ic Data scheme)

RaptorQ : : Decoder<T it , T it> dec (u i n t 64 t s i z e ,
u i n t 16 t symbol s i ze ,
u i n t 16 t sub blocks ,
u i n t 8 t b locks)

11

Which should be pretty self-explanatory, once you understand how
the encoder works.

The remaining methods are:

decode : Input: Fwd It &start, const Fwd It end
return:uint64 t
Write all the blocks into the iterator. refuses to write if the
input has not been completely received. Return the number
of iterators written.

decode : Input: Fwd It &start, const Fwd It end, const uint8 t
sbn
return:uint64 t
Write a specific block into the iterator. Refuses to write if
the input for that block has not been completely received.

add symbol : In It &start, const In It end, const uint32 t esi, const
uint8 t sbn
return: bool
Add one symbol, while explicitly specifying the symbol id
and the block id.

add symbol : In It &start, const In It end, const uint32 t id
return: bool
Same as before, but extract the block id and the symbol id
from the id parameter

free : Input: const uint8 t sbn
return: void
You might have stopped using a block, but the memory is
still there. free it.

blocks() : return: uint8 t The number of blocks.

block size() : Input: const uint8 t sbn
return: uint32 t
The block size, in bytes. Each block can have different sym-
bols and thus different size.

symbol size() : return: uint16 t The size of a symbol.

symbols : Input:uint8 t sbn
return: uint16 t
The number of symbols in a specific block. different blocks
can have different symbols.

12

3.5 C interface

The C interface looks a lot like the C++ one.
You need to include the cRaptorQ.h header, and link the libRap-
torQ library.
If you are working with the static version of libRaptorQ rememberStatic linking
to link the C++ standard library used when compiling the library
(libstdc++ for gcc or maybe libc++ for clang), your threding li-
brary (usually libpthread), and the C math library (libm).

As for the C++11 interface, you can get and set the shared and
local memory cache.
Shared cache uses shared memory, while local cache can be used
only be the current process.

Cache settings

u in t 64 t RaptorQ shared cache s i ze (
const u i n t 64 t shared cache) ;

bool Rap to rQ lo ca l c a che s i z e (
const u i n t 64 t l o c a l c a c h e) ;

u i n t 64 t Rapto rQ get sha red cache s i z e () ;
u i n t 64 t Rap t o rQ ge t l o c a l c a ch e s i z e () ;

To use libRaptorQ you need to build the encoder or the decoder.

The C interface is just a wrapper around the C++ code, so you
still have to specify the same things as before. A quick glance at
the constructors should give you all the information you need:

C Constructors

typede f enum { RQNONE = 0 , RQ ENC 8 = 1 , RQ ENC 16 = 2 ,
RQ ENC 32 = 3 , RQ ENC 64 = 4 , RQ DEC 8 = 5 ,
RQ DEC 16 = 6 , RQ DEC 32 = 7 , RQ DEC 64 = 8}

RaptorQ type ;

s t r u c t RaptorQ ptr
{

void ∗ptr = nu l l p t r ;
const RaptorQ type type ;

} ;

RaptorQ ptr∗ RaptorQ Enc (const RaptorQ type type ,
void ∗data ,
const u i n t 64 t s i z e ,
const u i n t 16 t min subsymbol s ize ,
const u i n t 16 t symbol s i ze ,
const s i z e t max memory) ;

RaptorQ ptr∗ RaptorQ Dec (const RaptorQ type type ,
const RaptorQ OTI Common Data common ,
const RaptorQ OTI Scheme Specif ic Data

scheme) ;

13

The encoder and decoder must have a specific alignment. in C++
you can also have different alignments for the input and output,
while in C things are a bit more strict as we have to enumerate all
the possible cases. So you only get the same data alignment for
both input and output.
Still, you don’t lose anything in performance.

3.5.1 Common functions for (de/en)coding

These functions are used by both the decoder and the decoder,
and will be helpful in tracking how much memory you will need to
allocate, or in general in managing the encoder and decoder.

The ptr must be a valid encoder or decoder. The names for now
are self-explanatory. Blocks can have different symbols, so the size
of a block and the number of symbols in a block depend on which
block we are talking about.

symbols, blocks, memory

u in t 16 t RaptorQ symbol s ize (s t r u c t RaptorQ ptr ∗ptr) ;
u i n t 8 t RaptorQ blocks (s t r u c t RaptorQ ptr ∗ptr) ;
u i n t 32 t RaptorQ block s i ze (s t r u c t RaptorQ ptr ∗ptr ,

const u i n t 8 t sbn) ;
u i n t 16 t RaptorQ symbols (s t r u c t RaptorQ ptr ∗ptr ,

const u i n t 8 t sbn) ;

void RaptorQ free (s t r u c t RaptorQ ptr ∗∗ ptr) ;
void RaptorQ free b lock (s t r u c t RaptorQ ptr ∗ptr ,

const u i n t 8 t sbn) ;

Finally, when you are done working with a block, you can free the
memory associated with the single block and just free the whole
(en/de)coder when you are done. Freeing the whole (en/de)coder
will obviously free also all the blocks.

3.5.2 Encoding

First, we need to tell the receiver all the parameters that the en-OTI Data
coder is using, and for that two functions are provided:

typede f u i n t 64 t RaptorQ OTI Common Data ;
typede f u i n t 32 t RaptorQ OTI Scheme Specif ic Data ;

RaptorQ OTI Common Data RaptorQ OTI Common (
s t r u c t RaptorQ ptr ∗ enc) ;

RaptorQ OTI Scheme Specif ic Data RaptorQ OTI Scheme (
s t r u c t RaptorQ ptr ∗ enc) ;

Encoding

14

// maximum number o f r e pa i r symbol in a block
u in t 32 t RaptorQ max repair (RaptorQ ptr ∗enc ,

const u i n t 8 t sbn) ;
// es t imate bytes o f ram used in the precomputation
// o f one block
s i z e t RaptorQ precompute max memory (

s t r u c t RaptorQ ptr ∗ enc) ;
// do the precomputation .
void RaptorQ precompute (s t r u c t RaptorQ ptr ∗enc ,

const u i n t 8 t threads ,
const bool background) ;

// encode one symbol . source block number and
// symbol id are in the ‘ ‘ id ’ ’ f i e l d .
// r e tu rn s number o f a l ignments wr i t t en .
u i n t 64 t RaptorQ encode id (s t r u c t RaptorQ ptr ∗enc ,

void ∗∗data ,
const u i n t 64 t s i z e ,
const u i n t 32 t id) ;

// encode one symbol . same as be f o r e
u i n t 64 t RaptorQ encode (s t r u c t RaptorQ ptr ∗enc ,

void ∗∗data ,
const u i n t 64 t s i z e ,
const u i n t 32 t e s i ,
const u i n t 8 t sbn) ;

// bu i ld an ‘ ‘ id ’ ’ f i e l d out o f an e s i and sbn f i e l d .
u i n t 32 t RaptorQ id (const u i n t 32 t e s i ,

const u i n t 8 t sbn) ;

As for the C++ version, everything is thread-safe.

You can start the precomputation in background and not worry
about it.
If you request repair symbols before the computation is finished,
the call will block until the data is available.

The encode functions are the same, and will encode one symbol.
They work for both source symbols and repair symbols, just keep
increasing the esi field

15

3.5.3 Decoding

Decoding

// return the t o t a l s i z e o f the data that w i l l be
// decoded
u in t 64 t RaptorQ bytes (s t r u c t RaptorQ ptr ∗dec) ;

// decode a l l b locks .
// r e tu rn s the number o f wr i t t en a l ignments .
// r e tu rn s 0 i f decoding o f ∗ everyth ing ∗ i s not p o s s i b l e
u i n t 64 t RaptorQ decode (s t r u c t RaptorQ ptr ∗dec ,

void ∗∗data ,
const s i z e t s i z e) ;

// decode only one block (i f p o s s i b l e)
// r e tu rn s 0 i f decoding o f the block i s not p o s s i b l e .
u i n t 64 t RaptorQ decode block (s t r u c t RaptorQ ptr ∗dec ,

void ∗∗data ,
const s i z e t s i z e ,
const u i n t 8 t sbn) ;

// add a r e c e i v ed symbol to the s t r u c tu r e .
// e i t h e r by us ing the ‘ id ’ f i e l d
bool RaptorQ add symbol id (s t r u c t RaptorQ ptr ∗dec ,

void ∗∗data ,
const u i n t 32 t s i z e ,
const u i n t 32 t id) ;

// or by e x p l i c i t e l y d e c l a r i n g e s i and sbn
bool RaptorQ add symbol (s t r u c t RaptorQ ptr ∗dec ,

void ∗∗data ,
const u i n t 32 t s i z e ,
const u i n t 32 t e s i ,
const u i n t 8 t sbn) ;

16

4 GNU Free Documentation License

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other

functional and useful document "free" in the sense of freedom: to

assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommercially.

Secondarily, this License preserves for the author and publisher a way

to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of "copyleft", which means that derivative

works of the document must themselves be free in the same sense. It

complements the GNU General Public License, which is a copyleft

license designed for free software.

We have designed this License in order to use it for manuals for free

software, because free software needs free documentation: a free

program should come with manuals providing the same freedoms that the

software does. But this License is not limited to software manuals;

it can be used for any textual work, regardless of subject matter or

whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be

distributed under the terms of this License. Such a notice grants a

world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The "Document", below,

refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you

copy, modify or distribute the work in a way requiring permission

under copyright law.

A "Modified Version" of the Document means any work containing the

17

Document or a portion of it, either copied verbatim, or with

modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of

the Document that deals exclusively with the relationship of the

publishers or authors of the Document to the Document’s overall

subject (or to related matters) and contains nothing that could fall

directly within that overall subject. (Thus, if the Document is in

part a textbook of mathematics, a Secondary Section may not explain

any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal,

commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles

are designated, as being those of Invariant Sections, in the notice

that says that the Document is released under this License. If a

section does not fit the above definition of Secondary then it is not

allowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant

Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,

as Front-Cover Texts or Back-Cover Texts, in the notice that says that

the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,

represented in a format whose specification is available to the

general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of

pixels) generic paint programs or (for drawings) some widely available

drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file

format whose markup, or absence of markup, has been arranged to thwart

or discourage subsequent modification by readers is not Transparent.

An image format is not Transparent if used for any substantial amount

of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain

ASCII without markup, Texinfo input format, LaTeX input format, SGML

or XML using a publicly available DTD, and standard-conforming simple

HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats

include proprietary formats that can be read and edited only by

proprietary word processors, SGML or XML for which the DTD and/or

processing tools are not generally available, and the

machine-generated HTML, PostScript or PDF produced by some word

18

processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material

this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means

the text near the most prominent appearance of the work’s title,

preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of

the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose

title either is precisely XYZ or contains XYZ in parentheses following

text that translates XYZ in another language. (Here XYZ stands for a

specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title"

of such a section when you modify the Document means that it remains a

section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty

Disclaimers are considered to be included by reference in this

License, but only as regards disclaiming warranties: any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the

copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not use

technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may accept

compensation in exchange for copies. If you distribute a large enough

number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and

you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the

Document’s license notice requires Cover Texts, you must enclose the

copies in covers that carry, clearly and legibly, all these Cover

19

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on

the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present

the full title with all words of the title equally prominent and

visible. You may add other material on the covers in addition.

Copying with changes limited to the covers, as long as they preserve

the title of the Document and satisfy these conditions, can be treated

as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit

legibly, you should put the first ones listed (as many as fit

reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering

more than 100, you must either include a machine-readable Transparent

copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using

public has access to download using public-standard network protocols

a complete Transparent copy of the Document, free of added material.

If you use the latter option, you must take reasonably prudent steps,

when you begin distribution of Opaque copies in quantity, to ensure

that this Transparent copy will remain thus accessible at the stated

location until at least one year after the last time you distribute an

Opaque copy (directly or through your agents or retailers) of that

edition to the public.

It is requested, but not required, that you contact the authors of the

Document well before redistributing any large number of copies, to

give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under

the conditions of sections 2 and 3 above, provided that you release

the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions

(which should, if there were any, be listed in the History section

of the Document). You may use the same title as a previous version

if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified

20

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the

Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the

terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and

publisher of the Modified Version as given on the Title Page. If

there is no section Entitled "History" in the Document, create one

stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for

public access to a Transparent copy of the Document, and likewise

the network locations given in the Document for previous versions

it was based on. These may be placed in the "History" section.

You may omit a network location for a work that was published at

least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",

Preserve the Title of the section, and preserve in the section all

the substance and tone of each of the contributor acknowledgements

and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,

unaltered in their text and in their titles. Section numbers

or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section

may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"

or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or

appendices that qualify as Secondary Sections and contain no material

copied from the Document, you may at your option designate some or all

of these sections as invariant. To do this, add their titles to the

list of Invariant Sections in the Modified Version’s license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains

21

nothing but endorsements of your Modified Version by various

parties--for example, statements of peer review or that the text has

been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text, and a

passage of up to 25 words as a Back-Cover Text, to the end of the list

of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document already

includes a cover text for the same cover, previously added by you or

by arrangement made by the same entity you are acting on behalf of,

you may not add another; but you may replace the old one, on explicit

permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License

give permission to use their names for publicity for or to assert or

imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified

versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and

list them all as Invariant Sections of your combined work in its

license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and

multiple identical Invariant Sections may be replaced with a single

copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original

author or publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"

in the various original documents, forming one section Entitled

"History"; likewise combine any sections Entitled "Acknowledgements",

and any sections Entitled "Dedications". You must delete all sections

Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other

documents released under this License, and replace the individual

22

copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules

of this License for verbatim copying of each of the documents in all

other respects.

You may extract a single document from such a collection, and

distribute it individually under this License, provided you insert a

copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that

document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate

and independent documents or works, in or on a volume of a storage or

distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights

of the compilation’s users beyond what the individual works permit.

When the Document is included in an aggregate, this License does not

apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these

copies of the Document, then if the Document is less than one half of

the entire aggregate, the Document’s Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the

electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may

distribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special

permission from their copyright holders, but you may include

translations of some or all Invariant Sections in addition to the

original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the

Document, and any Warranty Disclaimers, provided that you also include

the original English version of this License and the original versions

of those notices and disclaimers. In case of a disagreement between

the translation and the original version of this License or a notice

or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",

"Dedications", or "History", the requirement (section 4) to Preserve

23

its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, or distribute it is void, and

will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license

from a particular copyright holder is reinstated (a) provisionally,

unless and until the copyright holder explicitly and finally

terminates your license, and (b) permanently, if the copyright holder

fails to notify you of the violation by some reasonable means prior to

60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, receipt of a copy of some or all of the same material does

not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions

will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.

If the Document specifies that a particular numbered version of this

License "or any later version" applies to it, you have the option of

following the terms and conditions either of that specified version or

of any later version that has been published (not as a draft) by the

Free Software Foundation. If the Document does not specify a version

number of this License, you may choose any version ever published (not

as a draft) by the Free Software Foundation. If the Document

specifies that a proxy can decide which future versions of this

24

License can be used, that proxy’s public statement of acceptance of a

version permanently authorizes you to choose that version for the

Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any

World Wide Web server that publishes copyrightable works and also

provides prominent facilities for anybody to edit those works. A

public wiki that anybody can edit is an example of such a server. A

"Massive Multiauthor Collaboration" (or "MMC") contained in the site

means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0

license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in San Francisco,

California, as well as future copyleft versions of that license

published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in

part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this

License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in whole or

in part into the MMC, (1) had no cover texts or invariant sections, and

(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site

under CC-BY-SA on the same site at any time before August 1, 2009,

provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of

the License in the document and put the following copyright and

license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the "with...Texts." line with this:

25

with the Invariant Sections being LIST THEIR TITLES, with the

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples of program code, we

recommend releasing these examples in parallel under your choice of

free software license, such as the GNU General Public License,

to permit their use in free software.

26

Index
Blocks

C++, 10

Cache
C, 13
C++’, 8

cMake, 4
Contacts, 3

Decoder
C, 16
C++, 11

dependencies, 4

Encoder
C, 14
C++, 8

GPG, 3

Install, 5
Interface

C, 13
C++, 7

Interleaving, 7
Iterators, 7

Sequencing, 6
Sizes, 7

Static Linking, 13
Symbols

C++, 11

Theory, 6

27

	Contacts
	Build & install
	Get the source code
	Dependencies
	Build & Install

	Working with RaptorQ
	Theory (you really need this)
	Blocks & Symbols
	C++ interface
	Caching precomputations
	The Encoder
	Blocks
	Symbols
	The Decoder

	C interface
	Common functions for (de/en)coding
	Encoding
	Decoding

	GNU Free Documentation License

