Skip to content
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_ZVECTOR_H
#define EIGEN_PACKET_MATH_ZVECTOR_H
#include <stdint.h>
namespace Eigen {
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif
typedef __vector int Packet4i;
typedef __vector unsigned int Packet4ui;
typedef __vector __bool int Packet4bi;
typedef __vector short int Packet8i;
typedef __vector unsigned char Packet16uc;
typedef __vector double Packet2d;
typedef __vector unsigned long long Packet2ul;
typedef __vector long long Packet2l;
typedef struct {
Packet2d v4f[2];
} Packet4f;
typedef union {
int32_t i[4];
uint32_t ui[4];
int64_t l[2];
uint64_t ul[2];
double d[2];
Packet4i v4i;
Packet4ui v4ui;
Packet2l v2l;
Packet2ul v2ul;
Packet2d v2d;
} Packet;
// We don't want to write the same code all the time, but we need to reuse the constants
// and it doesn't really work to declare them global, so we define macros instead
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = reinterpret_cast<Packet4i>(vec_splat_s32(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = reinterpret_cast<Packet2d>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = reinterpret_cast<Packet2l>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = pset1<Packet2d>(X)
#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = pset1<Packet2l>(X)
// These constants are endian-agnostic
//static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE, 1); //{ 1, 1, 1, 1}
static _EIGEN_DECLARE_CONST_FAST_Packet2d(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ONE, 1);
static Packet2d p2d_ONE = { 1.0, 1.0 };
static Packet2d p2d_ZERO_ = { -0.0, -0.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
static Packet2d p2d_COUNTDOWN = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet16uc>(p2d_ZERO), reinterpret_cast<Packet16uc>(p2d_ONE), 8));
static Packet16uc p16uc_PSET64_HI = { 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 };
// Mask alignment
#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0
#define _EIGEN_ALIGNED_PTR(x) ((std::ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT)
// Handle endianness properly while loading constants
// Define global static constants:
static Packet16uc p16uc_FORWARD = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 };
static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
/*static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };*/
static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
/*static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};*/
static Packet16uc p16uc_TRANSPOSE64_HI = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
//static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
//static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ZVECTOR_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#else
#define EIGEN_ZVECTOR_PREFETCH(ADDR) asm( " pfd [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#endif
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasBlend = 1
};
};
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
typedef Packet4f half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
/* Forward declaration */
EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock<Packet4f,4>& kernel);
inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
{
Packet vt;
vt.v4i = v;
s << vt.i[0] << ", " << vt.i[1] << ", " << vt.i[2] << ", " << vt.i[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
{
Packet vt;
vt.v4ui = v;
s << vt.ui[0] << ", " << vt.ui[1] << ", " << vt.ui[2] << ", " << vt.ui[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2l & v)
{
Packet vt;
vt.v2l = v;
s << vt.l[0] << ", " << vt.l[1];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2ul & v)
{
Packet vt;
vt.v2ul = v;
s << vt.ul[0] << ", " << vt.ul[1] ;
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2d & v)
{
Packet vt;
vt.v2d = v;
s << vt.d[0] << ", " << vt.d[1];
return s;
}
/* Helper function to simulate a vec_splat_packet4f
*/
template<int element> EIGEN_STRONG_INLINE Packet4f vec_splat_packet4f(const Packet4f& from)
{
Packet4f splat;
switch (element) {
case 0:
splat.v4f[0] = vec_splat(from.v4f[0], 0);
splat.v4f[1] = splat.v4f[0];
break;
case 1:
splat.v4f[0] = vec_splat(from.v4f[0], 1);
splat.v4f[1] = splat.v4f[0];
break;
case 2:
splat.v4f[0] = vec_splat(from.v4f[1], 0);
splat.v4f[1] = splat.v4f[0];
break;
case 3:
splat.v4f[0] = vec_splat(from.v4f[1], 1);
splat.v4f[1] = splat.v4f[0];
break;
}
return splat;
}
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
switch (Offset % 4) {
case 1:
first = vec_sld(first, second, 4); break;
case 2:
first = vec_sld(first, second, 8); break;
case 3:
first = vec_sld(first, second, 12); break;
}
}
};
/* This is a tricky one, we have to translate float alignment to vector elements of sizeof double
*/
template<int Offset>
struct palign_impl<Offset,Packet4f>
{
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
{
switch (Offset % 4) {
case 1:
first.v4f[0] = vec_sld(first.v4f[0], first.v4f[1], 8);
first.v4f[1] = vec_sld(first.v4f[1], second.v4f[0], 8);
break;
case 2:
first.v4f[0] = first.v4f[1];
first.v4f[1] = second.v4f[0];
break;
case 3:
first.v4f[0] = vec_sld(first.v4f[1], second.v4f[0], 8);
first.v4f[1] = vec_sld(second.v4f[0], second.v4f[1], 8);
break;
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset == 1)
first = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(first), reinterpret_cast<Packet4i>(second), 8));
}
};
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v4i;
}
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet4f vfrom;
vfrom.v4f[0] = vec_ld2f(&from[0]);
vfrom.v4f[1] = vec_ld2f(&from[2]);
return vfrom;
}
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v2d;
}
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v4i = from;
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
vec_st2f(from.v4f[0], &to[0]);
vec_st2f(from.v4f[1], &to[2]);
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v2d = from;
}
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from)
{
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) {
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from)
{
Packet4f to;
to.v4f[0] = pset1<Packet2d>(static_cast<const double&>(from));
to.v4f[1] = to.v4f[0];
return to;
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4i>(const int *a,
Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3)
{
a3 = pload<Packet4i>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
a3 = vec_splat(a3, 3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
a3 = pload<Packet4f>(a);
a0 = vec_splat_packet4f<0>(a3);
a1 = vec_splat_packet4f<1>(a3);
a2 = vec_splat_packet4f<2>(a3);
a3 = vec_splat_packet4f<3>(a3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
a1 = pload<Packet2d>(a);
a0 = vec_splat(a1, 0);
a1 = vec_splat(a1, 1);
a3 = pload<Packet2d>(a+2);
a2 = vec_splat(a3, 0);
a3 = vec_splat(a3, 1);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
return pload<Packet4i>(ai);
}
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
float EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
return pload<Packet4f>(ai);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
double EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet2d>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
pstore<int>((int *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
to[3*stride] = ai[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
float EIGEN_ALIGN16 ai[4];
pstore<float>((float *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
to[3*stride] = ai[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
double EIGEN_ALIGN16 af[2];
pstore<double>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f c;
c.v4f[0] = a.v4f[0] + b.v4f[0];
c.v4f[1] = a.v4f[1] + b.v4f[1];
return c;
}
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f c;
c.v4f[0] = a.v4f[0] - b.v4f[0];
c.v4f[1] = a.v4f[1] - b.v4f[1];
return c;
}
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f c;
c.v4f[0] = a.v4f[0] * b.v4f[0];
c.v4f[1] = a.v4f[1] * b.v4f[1];
return c;
}
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f c;
c.v4f[0] = a.v4f[0] / b.v4f[0];
c.v4f[1] = a.v4f[1] / b.v4f[1];
return c;
}
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
{
Packet4f c;
c.v4f[0] = -a.v4f[0];
c.v4f[1] = -a.v4f[1];
return c;
}
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd<Packet4i>(pmul<Packet4i>(a, b), c); }
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
{
Packet4f res;
res.v4f[0] = vec_madd(a.v4f[0], b.v4f[0], c.v4f[0]);
res.v4f[1] = vec_madd(a.v4f[1], b.v4f[1], c.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return padd<Packet4i>(pset1<Packet4i>(a), p4i_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return padd<Packet4f>(pset1<Packet4f>(a), p4f_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return padd<Packet2d>(pset1<Packet2d>(a), p2d_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pmin(a.v4f[0], b.v4f[0]);
res.v4f[1] = pmin(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pmax(a.v4f[0], b.v4f[0]);
res.v4f[1] = pmax(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pand(a.v4f[0], b.v4f[0]);
res.v4f[1] = pand(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pand(a.v4f[0], b.v4f[0]);
res.v4f[1] = pand(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pand(a.v4f[0], b.v4f[0]);
res.v4f[1] = pand(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return pand<Packet4i>(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f res;
res.v4f[0] = pandnot(a.v4f[0], b.v4f[0]);
res.v4f[1] = pandnot(a.v4f[1], b.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a)
{
Packet4f res;
res.v4f[0] = vec_round(a.v4f[0]);
res.v4f[1] = vec_round(a.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) { return vec_round(a); }
template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a)
{
Packet4f res;
res.v4f[0] = vec_ceil(a.v4f[0]);
res.v4f[1] = vec_ceil(a.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return vec_ceil(a); }
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a)
{
Packet4f res;
res.v4f[0] = vec_floor(a.v4f[0]);
res.v4f[1] = vec_floor(a.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return vec_floor(a); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { return pload<Packet4i>(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { return pload<Packet4f>(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { return pload<Packet2d>(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p = pload<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
Packet4f p = pload<Packet4f>(from);
p.v4f[1] = vec_splat(p.v4f[0], 1);
p.v4f[0] = vec_splat(p.v4f[0], 0);
return p;
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
Packet2d p = pload<Packet2d>(from);
return vec_perm(p, p, p16uc_PSET64_HI);
}
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { pstore<int>(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { pstore<float>(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { pstore<double>(to, from); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[2]; vec_st2f(a.v4f[0], &x[0]); return x[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{
return reinterpret_cast<Packet4i>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE32));
}
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE64));
}
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
{
Packet4f rev;
rev.v4f[0] = preverse<Packet2d>(a.v4f[1]);
rev.v4f[1] = preverse<Packet2d>(a.v4f[0]);
return rev;
}
template<> EIGEN_STRONG_INLINE Packet4i pabs<Packet4i>(const Packet4i& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet2d pabs<Packet2d>(const Packet2d& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet4f pabs<Packet4f>(const Packet4f& a)
{
Packet4f res;
res.v4f[0] = pabs(a.v4f[0]);
res.v4f[1] = pabs(a.v4f[1]);
return res;
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i b, sum;
b = vec_sld(a, a, 8);
sum = padd<Packet4i>(a, b);
b = vec_sld(sum, sum, 4);
sum = padd<Packet4i>(sum, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
Packet2d b, sum;
b = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8));
sum = padd<Packet2d>(a, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet2d sum;
sum = padd<Packet2d>(a.v4f[0], a.v4f[1]);
double first = predux<Packet2d>(sum);
return static_cast<float>(first);
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = padd<Packet4i>(sum[0], sum[1]);
// Lines 2+3
sum[1] = padd<Packet4i>(sum[2], sum[3]);
// Add the results
sum[0] = padd<Packet4i>(sum[0], sum[1]);
return sum[0];
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
Packet2d v[2], sum;
v[0] = padd<Packet2d>(vecs[0], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[0]), reinterpret_cast<Packet4ui>(vecs[0]), 8)));
v[1] = padd<Packet2d>(vecs[1], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[1]), reinterpret_cast<Packet4ui>(vecs[1]), 8)));
sum = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v[0]), reinterpret_cast<Packet4ui>(v[1]), 8));
return sum;
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
PacketBlock<Packet4f,4> transpose;
transpose.packet[0] = vecs[0];
transpose.packet[1] = vecs[1];
transpose.packet[2] = vecs[2];
transpose.packet[3] = vecs[3];
ptranspose(transpose);
Packet4f sum = padd(transpose.packet[0], transpose.packet[1]);
sum = padd(sum, transpose.packet[2]);
sum = padd(sum, transpose.packet[3]);
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return aux[0] * aux[1] * aux[2] * aux[3];
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(pmul(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
// Return predux_mul<Packet2d> of the subvectors product
return static_cast<float>(pfirst(predux_mul(pmul(a.v4f[0], a.v4f[1]))));
}
// min
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmin<Packet4i>(a, vec_sld(a, a, 8));
res = pmin<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(pmin<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
Packet2d b, res;
b = pmin<Packet2d>(a.v4f[0], a.v4f[1]);
res = pmin<Packet2d>(b, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(b), reinterpret_cast<Packet4i>(b), 8)));
return static_cast<float>(pfirst(res));
}
// max
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmax<Packet4i>(a, vec_sld(a, a, 8));
res = pmax<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(pmax<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
Packet2d b, res;
b = pmax<Packet2d>(a.v4f[0], a.v4f[1]);
res = pmax<Packet2d>(b, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(b), reinterpret_cast<Packet4i>(b), 8)));
return static_cast<float>(pfirst(res));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
Packet4i t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]);
Packet4i t1 = vec_mergel(kernel.packet[0], kernel.packet[2]);
Packet4i t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]);
Packet4i t3 = vec_mergel(kernel.packet[1], kernel.packet[3]);
kernel.packet[0] = vec_mergeh(t0, t2);
kernel.packet[1] = vec_mergel(t0, t2);
kernel.packet[2] = vec_mergeh(t1, t3);
kernel.packet[3] = vec_mergel(t1, t3);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
Packet2d t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI);
Packet2d t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO);
kernel.packet[0] = t0;
kernel.packet[1] = t1;
}
/* Split the Packet4f PacketBlock into 4 Packet2d PacketBlocks and transpose each one
*/
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
PacketBlock<Packet2d,2> t0,t1,t2,t3;
// copy top-left 2x2 Packet2d block
t0.packet[0] = kernel.packet[0].v4f[0];
t0.packet[1] = kernel.packet[1].v4f[0];
// copy top-right 2x2 Packet2d block
t1.packet[0] = kernel.packet[0].v4f[1];
t1.packet[1] = kernel.packet[1].v4f[1];
// copy bottom-left 2x2 Packet2d block
t2.packet[0] = kernel.packet[2].v4f[0];
t2.packet[1] = kernel.packet[3].v4f[0];
// copy bottom-right 2x2 Packet2d block
t3.packet[0] = kernel.packet[2].v4f[1];
t3.packet[1] = kernel.packet[3].v4f[1];
// Transpose all 2x2 blocks
ptranspose(t0);
ptranspose(t1);
ptranspose(t2);
ptranspose(t3);
// Copy back transposed blocks, but exchange t1 and t2 due to transposition
kernel.packet[0].v4f[0] = t0.packet[0];
kernel.packet[0].v4f[1] = t2.packet[0];
kernel.packet[1].v4f[0] = t0.packet[1];
kernel.packet[1].v4f[1] = t2.packet[1];
kernel.packet[2].v4f[0] = t1.packet[0];
kernel.packet[2].v4f[1] = t3.packet[0];
kernel.packet[3].v4f[0] = t1.packet[1];
kernel.packet[3].v4f[1] = t3.packet[1];
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] };
Packet4ui mask = vec_cmpeq(select, reinterpret_cast<Packet4ui>(p4i_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) {
Packet2ul select_hi = { ifPacket.select[0], ifPacket.select[1] };
Packet2ul select_lo = { ifPacket.select[2], ifPacket.select[3] };
Packet2ul mask_hi = vec_cmpeq(select_hi, reinterpret_cast<Packet2ul>(p2l_ONE));
Packet2ul mask_lo = vec_cmpeq(select_lo, reinterpret_cast<Packet2ul>(p2l_ONE));
Packet4f result;
result.v4f[0] = vec_sel(elsePacket.v4f[0], thenPacket.v4f[0], mask_hi);
result.v4f[1] = vec_sel(elsePacket.v4f[1], thenPacket.v4f[1], mask_lo);
return result;
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
Packet2ul select = { ifPacket.select[0], ifPacket.select[1] };
Packet2ul mask = vec_cmpeq(select, reinterpret_cast<Packet2ul>(p2l_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_ZVECTOR_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGNMENT_FUNCTORS_H
#define EIGEN_ASSIGNMENT_FUNCTORS_H
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor for scalar/packet assignment
*
*/
template<typename DstScalar,typename SrcScalar> struct assign_op {
EIGEN_EMPTY_STRUCT_CTOR(assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a = b; }
template<int Alignment, typename Packet>
EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
{ internal::pstoret<DstScalar,Packet,Alignment>(a,b); }
};
// Empty overload for void type (used by PermutationMatrix)
template<typename DstScalar> struct assign_op<DstScalar,void> {};
template<typename DstScalar,typename SrcScalar>
struct functor_traits<assign_op<DstScalar,SrcScalar> > {
enum {
Cost = NumTraits<DstScalar>::ReadCost,
PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::Vectorizable && packet_traits<SrcScalar>::Vectorizable
};
};
/** \internal
* \brief Template functor for scalar/packet assignment with addition
*
*/
template<typename DstScalar,typename SrcScalar> struct add_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(add_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a += b; }
template<int Alignment, typename Packet>
EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
{ internal::pstoret<DstScalar,Packet,Alignment>(a,internal::padd(internal::ploadt<Packet,Alignment>(a),b)); }
};
template<typename DstScalar,typename SrcScalar>
struct functor_traits<add_assign_op<DstScalar,SrcScalar> > {
enum {
Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasAdd
};
};
/** \internal
* \brief Template functor for scalar/packet assignment with subtraction
*
*/
template<typename DstScalar,typename SrcScalar> struct sub_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(sub_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a -= b; }
template<int Alignment, typename Packet>
EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
{ internal::pstoret<DstScalar,Packet,Alignment>(a,internal::psub(internal::ploadt<Packet,Alignment>(a),b)); }
};
template<typename DstScalar,typename SrcScalar>
struct functor_traits<sub_assign_op<DstScalar,SrcScalar> > {
enum {
Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::AddCost,
PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasSub
};
};
/** \internal
* \brief Template functor for scalar/packet assignment with multiplication
*
*/
template<typename DstScalar, typename SrcScalar=DstScalar>
struct mul_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; }
template<int Alignment, typename Packet>
EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
{ internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
};
template<typename DstScalar, typename SrcScalar>
struct functor_traits<mul_assign_op<DstScalar,SrcScalar> > {
enum {
Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasMul
};
};
/** \internal
* \brief Template functor for scalar/packet assignment with diviving
*
*/
template<typename DstScalar, typename SrcScalar=DstScalar> struct div_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(div_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a /= b; }
template<int Alignment, typename Packet>
EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
{ internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pdiv(internal::ploadt<Packet,Alignment>(a),b)); }
};
template<typename DstScalar, typename SrcScalar>
struct functor_traits<div_assign_op<DstScalar,SrcScalar> > {
enum {
Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasDiv
};
};
/** \internal
* \brief Template functor for scalar/packet assignment with swapping
*
* It works as follow. For a non-vectorized evaluation loop, we have:
* for(i) func(A.coeffRef(i), B.coeff(i));
* where B is a SwapWrapper expression. The trick is to make SwapWrapper::coeff behaves like a non-const coeffRef.
* Actually, SwapWrapper might not even be needed since even if B is a plain expression, since it has to be writable
* B.coeff already returns a const reference to the underlying scalar value.
*
* The case of a vectorized loop is more tricky:
* for(i,j) func.assignPacket<A_Align>(&A.coeffRef(i,j), B.packet<B_Align>(i,j));
* Here, B must be a SwapWrapper whose packet function actually returns a proxy object holding a Scalar*,
* the actual alignment and Packet type.
*
*/
template<typename Scalar> struct swap_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(swap_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const
{
#ifdef __CUDACC__
// FIXME is there some kind of cuda::swap?
Scalar t=b; const_cast<Scalar&>(b)=a; a=t;
#else
using std::swap;
swap(a,const_cast<Scalar&>(b));
#endif
}
};
template<typename Scalar>
struct functor_traits<swap_assign_op<Scalar> > {
enum {
Cost = 3 * NumTraits<Scalar>::ReadCost,
PacketAccess = packet_traits<Scalar>::Vectorizable
};
};
} // namespace internal
} // namespace Eigen
#endif // EIGEN_ASSIGNMENT_FUNCTORS_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BINARY_FUNCTORS_H
#define EIGEN_BINARY_FUNCTORS_H
namespace Eigen {
namespace internal {
//---------- associative binary functors ----------
template<typename Arg1, typename Arg2>
struct binary_op_base
{
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
};
/** \internal
* \brief Template functor to compute the sum of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_sum_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_sum_op>::ReturnType result_type;
#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
#else
scalar_sum_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::padd(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
{ return internal::predux(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_sum_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2, // rough estimate!
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasAdd && packet_traits<RhsScalar>::HasAdd
// TODO vectorize mixed sum
};
};
/** \internal
* \brief Template specialization to deprecate the summation of boolean expressions.
* This is required to solve Bug 426.
* \sa DenseBase::count(), DenseBase::any(), ArrayBase::cast(), MatrixBase::cast()
*/
template<> struct scalar_sum_op<bool,bool> : scalar_sum_op<int,int> {
EIGEN_DEPRECATED
scalar_sum_op() {}
};
/** \internal
* \brief Template functor to compute the product of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_product_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_product_op>::ReturnType result_type;
#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
#else
scalar_product_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmul(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
{ return internal::predux_mul(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
// TODO vectorize mixed product
};
};
/** \internal
* \brief Template functor to compute the conjugate product of two scalars
*
* This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_conj_product_op : binary_op_base<LhsScalar,RhsScalar>
{
enum {
Conj = NumTraits<LhsScalar>::IsComplex
};
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_conj_product_op>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
{ return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
enum {
Cost = NumTraits<LhsScalar>::MulCost,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
};
};
/** \internal
* \brief Template functor to compute the min of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_min_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_min_op>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::mini(a, b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmin(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
{ return internal::predux_min(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_min_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMin
};
};
/** \internal
* \brief Template functor to compute the max of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_max_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_max_op>::ReturnType result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::maxi(a, b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmax(a,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
{ return internal::predux_max(a); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_max_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMax
};
};
/** \internal
* \brief Template functors for comparison of two scalars
* \todo Implement packet-comparisons
*/
template<typename LhsScalar, typename RhsScalar, ComparisonName cmp> struct scalar_cmp_op;
template<typename LhsScalar, typename RhsScalar, ComparisonName cmp>
struct functor_traits<scalar_cmp_op<LhsScalar,RhsScalar, cmp> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = false
};
};
template<ComparisonName Cmp, typename LhsScalar, typename RhsScalar>
struct result_of<scalar_cmp_op<LhsScalar, RhsScalar, Cmp>(LhsScalar,RhsScalar)> {
typedef bool type;
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_EQ> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LT> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<b;}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_LE> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GT> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_GE> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_UNORD> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);}
};
template<typename LhsScalar, typename RhsScalar>
struct scalar_cmp_op<LhsScalar,RhsScalar, cmp_NEQ> : binary_op_base<LhsScalar,RhsScalar>
{
typedef bool result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;}
};
/** \internal
* \brief Template functor to compute the hypot of two scalars
*
* \sa MatrixBase::stableNorm(), class Redux
*/
template<typename Scalar>
struct scalar_hypot_op<Scalar,Scalar> : binary_op_base<Scalar,Scalar>
{
EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
// typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
{
EIGEN_USING_STD_MATH(sqrt)
Scalar p, qp;
if(_x>_y)
{
p = _x;
qp = _y / p;
}
else
{
p = _y;
qp = _x / p;
}
return p * sqrt(Scalar(1) + qp*qp);
}
};
template<typename Scalar>
struct functor_traits<scalar_hypot_op<Scalar,Scalar> > {
enum
{
Cost = 3 * NumTraits<Scalar>::AddCost +
2 * NumTraits<Scalar>::MulCost +
2 * scalar_div_cost<Scalar,false>::value,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the pow of two scalars
*/
template<typename Scalar, typename Exponent>
struct scalar_pow_op : binary_op_base<Scalar,Exponent>
{
typedef typename ScalarBinaryOpTraits<Scalar,Exponent,scalar_pow_op>::ReturnType result_type;
#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
EIGEN_EMPTY_STRUCT_CTOR(scalar_pow_op)
#else
scalar_pow_op() {
typedef Scalar LhsScalar;
typedef Exponent RhsScalar;
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC
inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); }
};
template<typename Scalar, typename Exponent>
struct functor_traits<scalar_pow_op<Scalar,Exponent> > {
enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
};
//---------- non associative binary functors ----------
/** \internal
* \brief Template functor to compute the difference of two scalars
*
* \sa class CwiseBinaryOp, MatrixBase::operator-
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_difference_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_difference_op>::ReturnType result_type;
#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
#else
scalar_difference_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::psub(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_difference_op<LhsScalar,RhsScalar> > {
enum {
Cost = (NumTraits<LhsScalar>::AddCost+NumTraits<RhsScalar>::AddCost)/2,
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasSub && packet_traits<RhsScalar>::HasSub
};
};
/** \internal
* \brief Template functor to compute the quotient of two scalars
*
* \sa class CwiseBinaryOp, Cwise::operator/()
*/
template<typename LhsScalar,typename RhsScalar>
struct scalar_quotient_op : binary_op_base<LhsScalar,RhsScalar>
{
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar,scalar_quotient_op>::ReturnType result_type;
#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
#else
scalar_quotient_op() {
EIGEN_SCALAR_BINARY_OP_PLUGIN
}
#endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pdiv(a,b); }
};
template<typename LhsScalar,typename RhsScalar>
struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
typedef typename scalar_quotient_op<LhsScalar,RhsScalar>::result_type result_type;
enum {
PacketAccess = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv,
Cost = scalar_div_cost<result_type,PacketAccess>::value
};
};
/** \internal
* \brief Template functor to compute the and of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator&&
*/
struct scalar_boolean_and_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
};
template<> struct functor_traits<scalar_boolean_and_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the or of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator||
*/
struct scalar_boolean_or_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
};
template<> struct functor_traits<scalar_boolean_or_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the xor of two booleans
*
* \sa class CwiseBinaryOp, ArrayBase::operator^
*/
struct scalar_boolean_xor_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_xor_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; }
};
template<> struct functor_traits<scalar_boolean_xor_op> {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = false
};
};
//---------- binary functors bound to a constant, thus appearing as a unary functor ----------
// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value.
// They are analogues to std::binder1st/binder2nd but with the following differences:
// - they are compatible with packetOp
// - they are portable across C++ versions (the std::binder* are deprecated in C++11)
template<typename BinaryOp> struct bind1st_op : BinaryOp {
typedef typename BinaryOp::first_argument_type first_argument_type;
typedef typename BinaryOp::second_argument_type second_argument_type;
typedef typename BinaryOp::result_type result_type;
bind1st_op(const first_argument_type &val) : m_value(val) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const
{ return BinaryOp::packetOp(internal::pset1<Packet>(m_value), b); }
first_argument_type m_value;
};
template<typename BinaryOp> struct functor_traits<bind1st_op<BinaryOp> > : functor_traits<BinaryOp> {};
template<typename BinaryOp> struct bind2nd_op : BinaryOp {
typedef typename BinaryOp::first_argument_type first_argument_type;
typedef typename BinaryOp::second_argument_type second_argument_type;
typedef typename BinaryOp::result_type result_type;
bind2nd_op(const second_argument_type &val) : m_value(val) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return BinaryOp::packetOp(a,internal::pset1<Packet>(m_value)); }
second_argument_type m_value;
};
template<typename BinaryOp> struct functor_traits<bind2nd_op<BinaryOp> > : functor_traits<BinaryOp> {};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BINARY_FUNCTORS_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_NULLARY_FUNCTORS_H
#define EIGEN_NULLARY_FUNCTORS_H
namespace Eigen {
namespace internal {
template<typename Scalar>
struct scalar_constant_op {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; }
template<typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1<PacketType>(m_other); }
const Scalar m_other;
};
template<typename Scalar>
struct functor_traits<scalar_constant_op<Scalar> >
{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */,
PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
template<typename Scalar> struct scalar_identity_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
template<typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); }
};
template<typename Scalar>
struct functor_traits<scalar_identity_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
template <typename Scalar, typename Packet, bool IsInteger> struct linspaced_op_impl;
template <typename Scalar, typename Packet>
struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/false>
{
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)),
m_flip(numext::abs(high)<numext::abs(low))
{}
template<typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const {
typedef typename NumTraits<Scalar>::Real RealScalar;
if(m_flip)
return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step);
else
return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step);
}
template<typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const
{
// Principle:
// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
if(m_flip)
{
Packet pi = plset<Packet>(Scalar(i-m_size1));
Packet res = padd(pset1<Packet>(m_high), pmul(pset1<Packet>(m_step), pi));
if(i==0)
res = pinsertfirst(res, m_low);
return res;
}
else
{
Packet pi = plset<Packet>(Scalar(i));
Packet res = padd(pset1<Packet>(m_low), pmul(pset1<Packet>(m_step), pi));
if(i==m_size1-unpacket_traits<Packet>::size+1)
res = pinsertlast(res, m_high);
return res;
}
}
const Scalar m_low;
const Scalar m_high;
const Index m_size1;
const Scalar m_step;
const bool m_flip;
};
template <typename Scalar, typename Packet>
struct linspaced_op_impl<Scalar,Packet,/*IsInteger*/true>
{
linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) :
m_low(low),
m_multiplier((high-low)/convert_index<Scalar>(num_steps<=1 ? 1 : num_steps-1)),
m_divisor(convert_index<Scalar>((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))),
m_use_divisor(num_steps>1 && (numext::abs(high-low)+1)<num_steps)
{}
template<typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Scalar operator() (IndexType i) const
{
if(m_use_divisor) return m_low + convert_index<Scalar>(i)/m_divisor;
else return m_low + convert_index<Scalar>(i)*m_multiplier;
}
const Scalar m_low;
const Scalar m_multiplier;
const Scalar m_divisor;
const bool m_use_divisor;
};
// ----- Linspace functor ----------------------------------------------------------------
// Forward declaration (we default to random access which does not really give
// us a speed gain when using packet access but it allows to use the functor in
// nested expressions).
template <typename Scalar, typename PacketType> struct linspaced_op;
template <typename Scalar, typename PacketType> struct functor_traits< linspaced_op<Scalar,PacketType> >
{
enum
{
Cost = 1,
PacketAccess = (!NumTraits<Scalar>::IsInteger) && packet_traits<Scalar>::HasSetLinear && packet_traits<Scalar>::HasBlend,
/*&& ((!NumTraits<Scalar>::IsInteger) || packet_traits<Scalar>::HasDiv),*/ // <- vectorization for integer is currently disabled
IsRepeatable = true
};
};
template <typename Scalar, typename PacketType> struct linspaced_op
{
linspaced_op(const Scalar& low, const Scalar& high, Index num_steps)
: impl((num_steps==1 ? high : low),high,num_steps)
{}
template<typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); }
template<typename Packet,typename IndexType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); }
// This proxy object handles the actual required temporaries and the different
// implementations (integer vs. floating point).
const linspaced_op_impl<Scalar,PacketType,NumTraits<Scalar>::IsInteger> impl;
};
// Linear access is automatically determined from the operator() prototypes available for the given functor.
// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently
// and linear access is not possible. In all other cases, linear access is enabled.
// Users should not have to deal with this structure.
template<typename Functor> struct functor_has_linear_access { enum { ret = !has_binary_operator<Functor>::value }; };
// For unreliable compilers, let's specialize the has_*ary_operator
// helpers so that at least built-in nullary functors work fine.
#if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600))
template<typename Scalar,typename IndexType>
struct has_nullary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 1}; };
template<typename Scalar,typename IndexType>
struct has_unary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_binary_operator<scalar_constant_op<Scalar>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_nullary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_unary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_binary_operator<scalar_identity_op<Scalar>,IndexType> { enum { value = 1}; };
template<typename Scalar, typename PacketType,typename IndexType>
struct has_nullary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
template<typename Scalar, typename PacketType,typename IndexType>
struct has_unary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 1}; };
template<typename Scalar, typename PacketType,typename IndexType>
struct has_binary_operator<linspaced_op<Scalar,PacketType>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_nullary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 1}; };
template<typename Scalar,typename IndexType>
struct has_unary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
template<typename Scalar,typename IndexType>
struct has_binary_operator<scalar_random_op<Scalar>,IndexType> { enum { value = 0}; };
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_NULLARY_FUNCTORS_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STL_FUNCTORS_H
#define EIGEN_STL_FUNCTORS_H
namespace Eigen {
namespace internal {
// default functor traits for STL functors:
template<typename T>
struct functor_traits<std::multiplies<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::divides<T> >
{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::plus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::minus<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::negate<T> >
{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_or<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_and<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::logical_not<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::greater<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::less<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::greater_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::less_equal<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::not_equal_to<T> >
{ enum { Cost = 1, PacketAccess = false }; };
#if (__cplusplus < 201103L) && (EIGEN_COMP_MSVC <= 1900)
// std::binder* are deprecated since c++11 and will be removed in c++17
template<typename T>
struct functor_traits<std::binder2nd<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::binder1st<T> >
{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
#endif
template<typename T>
struct functor_traits<std::unary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
template<typename T>
struct functor_traits<std::binary_negate<T> >
{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
#ifdef EIGEN_STDEXT_SUPPORT
template<typename T0,typename T1>
struct functor_traits<std::project1st<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::project2nd<T0,T1> >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::select2nd<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::select1st<std::pair<T0,T1> > >
{ enum { Cost = 0, PacketAccess = false }; };
template<typename T0,typename T1>
struct functor_traits<std::unary_compose<T0,T1> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
template<typename T0,typename T1,typename T2>
struct functor_traits<std::binary_compose<T0,T1,T2> >
{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
#endif // EIGEN_STDEXT_SUPPORT
// allow to add new functors and specializations of functor_traits from outside Eigen.
// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
#ifdef EIGEN_FUNCTORS_PLUGIN
#include EIGEN_FUNCTORS_PLUGIN
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_STL_FUNCTORS_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TERNARY_FUNCTORS_H
#define EIGEN_TERNARY_FUNCTORS_H
namespace Eigen {
namespace internal {
//---------- associative ternary functors ----------
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TERNARY_FUNCTORS_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UNARY_FUNCTORS_H
#define EIGEN_UNARY_FUNCTORS_H
namespace Eigen {
namespace internal {
/** \internal
* \brief Template functor to compute the opposite of a scalar
*
* \sa class CwiseUnaryOp, MatrixBase::operator-
*/
template<typename Scalar> struct scalar_opposite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasNegate };
};
/** \internal
* \brief Template functor to compute the absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs
*/
template<typename Scalar> struct scalar_abs_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasAbs
};
};
/** \internal
* \brief Template functor to compute the score of a scalar, to chose a pivot
*
* \sa class CwiseUnaryOp
*/
template<typename Scalar> struct scalar_score_coeff_op : scalar_abs_op<Scalar>
{
typedef void Score_is_abs;
};
template<typename Scalar>
struct functor_traits<scalar_score_coeff_op<Scalar> > : functor_traits<scalar_abs_op<Scalar> > {};
/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */
template<typename Scalar, typename=void> struct abs_knowing_score
{
EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
typedef typename NumTraits<Scalar>::Real result_type;
template<typename Score>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
};
template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
{
EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
typedef typename NumTraits<Scalar>::Real result_type;
template<typename Scal>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; }
};
/** \internal
* \brief Template functor to compute the squared absolute value of a scalar
*
* \sa class CwiseUnaryOp, Cwise::abs2
*/
template<typename Scalar> struct scalar_abs2_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
/** \internal
* \brief Template functor to compute the conjugate of a complex value
*
* \sa class CwiseUnaryOp, MatrixBase::conjugate()
*/
template<typename Scalar> struct scalar_conjugate_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
PacketAccess = packet_traits<Scalar>::HasConj
};
};
/** \internal
* \brief Template functor to compute the phase angle of a complex
*
* \sa class CwiseUnaryOp, Cwise::arg
*/
template<typename Scalar> struct scalar_arg_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); }
template<typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
{ return internal::parg(a); }
};
template<typename Scalar>
struct functor_traits<scalar_arg_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasArg
};
};
/** \internal
* \brief Template functor to cast a scalar to another type
*
* \sa class CwiseUnaryOp, MatrixBase::cast()
*/
template<typename Scalar, typename NewType>
struct scalar_cast_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef NewType result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the real part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::real()
*/
template<typename Scalar>
struct scalar_real_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
* \brief Template functor to extract the imaginary part of a complex as a reference
*
* \sa class CwiseUnaryOp, MatrixBase::imag()
*/
template<typename Scalar>
struct scalar_imag_ref_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct scalar_exp_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template <typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasExp,
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
Cost =
(sizeof(Scalar) == 4
// float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (14 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#else
Cost =
(sizeof(Scalar) == 4
// float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
// double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other
: (23 * NumTraits<Scalar>::AddCost +
12 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#endif
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, ArrayBase::log()
*/
template<typename Scalar> struct scalar_log_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog,
Cost =
(PacketAccess
// The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
// 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
#else
// 8 pmadd, 6 pmul, 8 padd/psub, 20 other
? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
#endif
// Measured cost of std::log.
: sizeof(Scalar)==4 ? 40 : 85)
};
};
/** \internal
*
* \brief Template functor to compute the logarithm of 1 plus a scalar value
*
* \sa class CwiseUnaryOp, ArrayBase::log1p()
*/
template<typename Scalar> struct scalar_log1p_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log1p_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasLog1p,
Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of log1p
};
};
/** \internal
*
* \brief Template functor to compute the base-10 logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log10()
*/
template<typename Scalar> struct scalar_log10_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); }
};
template<typename Scalar>
struct functor_traits<scalar_log10_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; };
/** \internal
* \brief Template functor to compute the square root of a scalar
* \sa class CwiseUnaryOp, Cwise::sqrt()
*/
template<typename Scalar> struct scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template <typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> > {
enum {
#if EIGEN_FAST_MATH
// The following numbers are based on the AVX implementation.
Cost = (sizeof(Scalar) == 8 ? 28
// 4 pmul, 1 pmadd, 3 other
: (3 * NumTraits<Scalar>::AddCost +
5 * NumTraits<Scalar>::MulCost)),
#else
// The following numbers are based on min VSQRT throughput on Haswell.
Cost = (sizeof(Scalar) == 8 ? 28 : 14),
#endif
PacketAccess = packet_traits<Scalar>::HasSqrt
};
};
/** \internal
* \brief Template functor to compute the reciprocal square root of a scalar
* \sa class CwiseUnaryOp, Cwise::rsqrt()
*/
template<typename Scalar> struct scalar_rsqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
};
template<typename Scalar>
struct functor_traits<scalar_rsqrt_op<Scalar> >
{ enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRsqrt
};
};
/** \internal
* \brief Template functor to compute the cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cos()
*/
template<typename Scalar> struct scalar_cos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCos
};
};
/** \internal
* \brief Template functor to compute the sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sin()
*/
template<typename Scalar> struct scalar_sin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSin
};
};
/** \internal
* \brief Template functor to compute the tan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tan()
*/
template<typename Scalar> struct scalar_tan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasTan
};
};
/** \internal
* \brief Template functor to compute the arc cosine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::acos()
*/
template<typename Scalar> struct scalar_acos_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasACos
};
};
/** \internal
* \brief Template functor to compute the arc sine of a scalar
* \sa class CwiseUnaryOp, ArrayBase::asin()
*/
template<typename Scalar> struct scalar_asin_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasASin
};
};
/** \internal
* \brief Template functor to compute the atan of a scalar
* \sa class CwiseUnaryOp, ArrayBase::atan()
*/
template<typename Scalar> struct scalar_atan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_atan_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasATan
};
};
/** \internal
* \brief Template functor to compute the tanh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::tanh()
*/
template <typename Scalar>
struct scalar_tanh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); }
};
template <typename Scalar>
struct functor_traits<scalar_tanh_op<Scalar> > {
enum {
PacketAccess = packet_traits<Scalar>::HasTanh,
Cost = ( (EIGEN_FAST_MATH && is_same<Scalar,float>::value)
// The following numbers are based on the AVX implementation,
#ifdef EIGEN_VECTORIZE_FMA
// Haswell can issue 2 add/mul/madd per cycle.
// 9 pmadd, 2 pmul, 1 div, 2 other
? (2 * NumTraits<Scalar>::AddCost +
6 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#else
? (11 * NumTraits<Scalar>::AddCost +
11 * NumTraits<Scalar>::MulCost +
scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#endif
// This number assumes a naive implementation of tanh
: (6 * NumTraits<Scalar>::AddCost +
3 * NumTraits<Scalar>::MulCost +
2 * scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value +
functor_traits<scalar_exp_op<Scalar> >::Cost))
};
};
/** \internal
* \brief Template functor to compute the sinh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::sinh()
*/
template<typename Scalar> struct scalar_sinh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sinh_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasSinh
};
};
/** \internal
* \brief Template functor to compute the cosh of a scalar
* \sa class CwiseUnaryOp, ArrayBase::cosh()
*/
template<typename Scalar> struct scalar_cosh_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cosh_op<Scalar> >
{
enum {
Cost = 5 * NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCosh
};
};
/** \internal
* \brief Template functor to compute the inverse of a scalar
* \sa class CwiseUnaryOp, Cwise::inverse()
*/
template<typename Scalar>
struct scalar_inverse_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
/** \internal
* \brief Template functor to compute the square of a scalar
* \sa class CwiseUnaryOp, Cwise::square()
*/
template<typename Scalar>
struct scalar_square_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the cube of a scalar
* \sa class CwiseUnaryOp, Cwise::cube()
*/
template<typename Scalar>
struct scalar_cube_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
template<typename Packet>
EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
{ return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
/** \internal
* \brief Template functor to compute the rounded value of a scalar
* \sa class CwiseUnaryOp, ArrayBase::round()
*/
template<typename Scalar> struct scalar_round_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
};
template<typename Scalar>
struct functor_traits<scalar_round_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasRound
};
};
/** \internal
* \brief Template functor to compute the floor of a scalar
* \sa class CwiseUnaryOp, ArrayBase::floor()
*/
template<typename Scalar> struct scalar_floor_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
};
template<typename Scalar>
struct functor_traits<scalar_floor_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasFloor
};
};
/** \internal
* \brief Template functor to compute the ceil of a scalar
* \sa class CwiseUnaryOp, ArrayBase::ceil()
*/
template<typename Scalar> struct scalar_ceil_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
};
template<typename Scalar>
struct functor_traits<scalar_ceil_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = packet_traits<Scalar>::HasCeil
};
};
/** \internal
* \brief Template functor to compute whether a scalar is NaN
* \sa class CwiseUnaryOp, ArrayBase::isnan()
*/
template<typename Scalar> struct scalar_isnan_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isnan)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isnan_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar is +/-inf
* \sa class CwiseUnaryOp, ArrayBase::isinf()
*/
template<typename Scalar> struct scalar_isinf_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isinf)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isinf_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to check whether a scalar has a finite value
* \sa class CwiseUnaryOp, ArrayBase::isfinite()
*/
template<typename Scalar> struct scalar_isfinite_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
typedef bool result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isfinite)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isfinite_op<Scalar> >
{
enum {
Cost = NumTraits<Scalar>::MulCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the logical not of a boolean
*
* \sa class CwiseUnaryOp, ArrayBase::operator!
*/
template<typename Scalar> struct scalar_boolean_not_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; }
};
template<typename Scalar>
struct functor_traits<scalar_boolean_not_op<Scalar> > {
enum {
Cost = NumTraits<bool>::AddCost,
PacketAccess = false
};
};
/** \internal
* \brief Template functor to compute the signum of a scalar
* \sa class CwiseUnaryOp, Cwise::sign()
*/
template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
template<typename Scalar>
struct scalar_sign_op<Scalar,false> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
}
//TODO
//template <typename Packet>
//EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct scalar_sign_op<Scalar,true> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
typedef typename NumTraits<Scalar>::Real real_type;
real_type aa = numext::abs(a);
if (aa==real_type(0))
return Scalar(0);
aa = real_type(1)/aa;
return Scalar(real(a)*aa, imag(a)*aa );
}
//TODO
//template <typename Packet>
//EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sign_op<Scalar> >
{ enum {
Cost =
NumTraits<Scalar>::IsComplex
? ( 8*NumTraits<Scalar>::MulCost ) // roughly
: ( 3*NumTraits<Scalar>::AddCost),
PacketAccess = packet_traits<Scalar>::HasSign
};
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_FUNCTORS_H