Skip to content
......@@ -2,30 +2,34 @@
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010-2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_ALTIVEC_H
#define EIGEN_COMPLEX_ALTIVEC_H
#ifndef EIGEN_COMPLEX32_ALTIVEC_H
#define EIGEN_COMPLEX32_ALTIVEC_H
namespace Eigen {
namespace internal {
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
#ifdef __VSX__
#if defined(_BIG_ENDIAN)
static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
#else
static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
#endif
#endif
//---------- float ----------
struct Packet2cf
{
EIGEN_STRONG_INLINE Packet2cf() {}
EIGEN_STRONG_INLINE explicit Packet2cf() : v(p4f_ZERO) {}
EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
Packet4f v;
};
......@@ -33,10 +37,12 @@ struct Packet2cf
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
......@@ -47,65 +53,78 @@ template<> struct packet_traits<std::complex<float> > : default_packet_traits
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
#ifdef __VSX__
HasBlend = 1,
#endif
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; };
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
Packet2cf res;
/* On AltiVec we cannot load 64-bit registers, so wa have to take care of alignment */
if((ptrdiff_t(&from) % 16) == 0)
if((std::ptrdiff_t(&from) % 16) == 0)
res.v = pload<Packet4f>((const float *)&from);
else
res.v = ploadu<Packet4f>((const float *)&from);
res.v = vec_perm(res.v, res.v, p16uc_PSET_HI);
res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI);
return res;
}
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_add(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_sub(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { return Packet2cf(pload<Packet4f>((const float *) from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { return Packet2cf(ploadu<Packet4f>((const float*) from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { pstoreu((float*)to, from.v); }
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet2cf>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
{
std::complex<float> EIGEN_ALIGN16 af[2];
pstore<std::complex<float> >((std::complex<float> *) af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v + b.v); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v - b.v); }
template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf((Packet4f)vec_xor((Packet4ui)a.v, p4ui_CONJ_XOR)); }
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor<Packet4f>(a.v, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR))); }
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
Packet4f v1, v2;
// Permute and multiply the real parts of a and b
v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE);
v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD);
// Get the imaginary parts of a
v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM);
v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN);
// multiply a_re * b
v1 = vec_madd(v1, b.v, p4f_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(v2, b.v, p4f_ZERO);
v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR);
v2 = reinterpret_cast<Packet4f>(pxor(v2, reinterpret_cast<Packet4f>(p4ui_CONJ_XOR)));
// permute back to a proper order
v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV);
v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV);
return Packet2cf(vec_add(v1, v2));
return Packet2cf(padd<Packet4f>(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_or(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_xor(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v, vec_nor(b.v,b.v))); }
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand<Packet4f>(a.v, b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por<Packet4f>(a.v, b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor<Packet4f>(a.v, b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot<Packet4f>(a.v, b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from)
{
return pset1<Packet2cf>(*from);
}
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { vec_dstt((float *)addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_PPC_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
{
......@@ -118,26 +137,30 @@ template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Pack
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
Packet4f rev_a;
rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2);
rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2);
return Packet2cf(rev_a);
}
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
Packet4f b;
b = (Packet4f) vec_sld(a.v, a.v, 8);
b = padd(a.v, b);
return pfirst(Packet2cf(b));
b = vec_sld(a.v, a.v, 8);
b = padd<Packet4f>(a.v, b);
return pfirst<Packet2cf>(Packet2cf(b));
}
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
Packet4f b1, b2;
b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
b2 = (Packet4f) vec_sld(b2, b2, 8);
b2 = padd(b1, b2);
#ifdef _BIG_ENDIAN
b1 = vec_sld(vecs[0].v, vecs[1].v, 8);
b2 = vec_sld(vecs[1].v, vecs[0].v, 8);
#else
b1 = vec_sld(vecs[1].v, vecs[0].v, 8);
b2 = vec_sld(vecs[0].v, vecs[1].v, 8);
#endif
b2 = vec_sld(b2, b2, 8);
b2 = padd<Packet4f>(b1, b2);
return Packet2cf(b2);
}
......@@ -146,10 +169,10 @@ template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const P
{
Packet4f b;
Packet2cf prod;
b = (Packet4f) vec_sld(a.v, a.v, 8);
prod = pmul(a, Packet2cf(b));
b = vec_sld(a.v, a.v, 8);
prod = pmul<Packet2cf>(a, Packet2cf(b));
return pfirst(prod);
return pfirst<Packet2cf>(prod);
}
template<int Offset>
......@@ -159,7 +182,11 @@ struct palign_impl<Offset,Packet2cf>
{
if (Offset==1)
{
#ifdef _BIG_ENDIAN
first.v = vec_sld(first.v, second.v, 8);
#else
first.v = vec_sld(second.v, first.v, 8);
#endif
}
}
};
......@@ -197,21 +224,238 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
}
};
template<> struct conj_helper<Packet4f, Packet2cf, false,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
{ return Packet2cf(internal::pmul<Packet4f>(x, y.v)); }
};
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
{
EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
{ return Packet2cf(internal::pmul<Packet4f>(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for AltiVec
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s = vec_madd(b.v, b.v, p4f_ZERO);
return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV))));
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a, b);
Packet4f s = pmul<Packet4f>(b.v, b.v);
return Packet2cf(pdiv(res.v, padd<Packet4f>(s, vec_perm(s, s, p16uc_COMPLEX32_REV))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
{
return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV));
return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf,2>& kernel)
{
Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
#ifdef __VSX__
template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) {
Packet2cf result;
result.v = reinterpret_cast<Packet4f>(pblend<Packet2d>(ifPacket, reinterpret_cast<Packet2d>(thenPacket.v), reinterpret_cast<Packet2d>(elsePacket.v)));
return result;
}
#endif
//---------- double ----------
#ifdef __VSX__
struct Packet1cd
{
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
Packet2d v;
};
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { return Packet1cd(ploadu<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet1cd>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
pstore<std::complex<double> >(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(pxor(a.v, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR2))); }
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
Packet2d a_re, a_im, v1, v2;
// Permute and multiply the real parts of a and b
a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
// Get the imaginary parts of a
a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
// multiply a_re * b
v1 = vec_madd(a_re, b.v, p2d_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(a_im, b.v, p2d_ZERO);
v2 = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v2), reinterpret_cast<Packet4ui>(v2), 8));
v2 = pxor(v2, reinterpret_cast<Packet2d>(p2ul_CONJ_XOR1));
return Packet1cd(padd<Packet2d>(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pand(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(por(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pxor(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pandnot(a.v, b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_PPC_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
{
std::complex<double> EIGEN_ALIGN16 res[2];
pstore<std::complex<double> >(res, a);
return res[0];
}
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
{
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> struct conj_helper<Packet2d, Packet1cd, false,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
{ return Packet1cd(internal::pmul<Packet2d>(x, y.v)); }
};
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
{ return Packet1cd(internal::pmul<Packet2d>(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for AltiVec
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
Packet2d s = pmul<Packet2d>(b.v, b.v);
return Packet1cd(pdiv(res.v, padd<Packet2d>(s, vec_perm(s, s, p16uc_REVERSE64))));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
{
Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
#endif // __VSX__
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_ALTIVEC_H
#endif // EIGEN_COMPLEX32_ALTIVEC_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H
#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H
namespace Eigen {
namespace internal {
static _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
static _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
static _EIGEN_DECLARE_CONST_Packet4i(23, 23);
static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
/* the smallest non denormalized float number */
static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000); // -1.f/0.f
static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_nan, 0xffffffff);
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
#ifdef __VSX__
static _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
static _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437);
static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
#ifdef __POWER8_VECTOR__
static Packet2l p2l_1023 = { 1023, 1023 };
static Packet2ul p2ul_52 = { 52, 52 };
#endif
#endif
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f plog<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
Packet4i emm0;
/* isvalid_mask is 0 if x < 0 or x is NaN. */
Packet4ui isvalid_mask = reinterpret_cast<Packet4ui>(vec_cmpge(x, p4f_ZERO));
Packet4ui iszero_mask = reinterpret_cast<Packet4ui>(vec_cmpeq(x, p4f_ZERO));
x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
emm0 = vec_sr(reinterpret_cast<Packet4i>(x),
reinterpret_cast<Packet4ui>(p4i_23));
/* keep only the fractional part */
x = pand(x, p4f_inv_mant_mask);
x = por(x, p4f_half);
emm0 = psub(emm0, p4i_0x7f);
Packet4f e = padd(vec_ctf(emm0, 0), p4f_1);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
Packet4f mask = reinterpret_cast<Packet4f>(vec_cmplt(x, p4f_cephes_SQRTHF));
Packet4f tmp = pand(x, mask);
x = psub(x, p4f_1);
e = psub(e, pand(p4f_1, mask));
x = padd(x, tmp);
Packet4f x2 = pmul(x,x);
Packet4f x3 = pmul(x2,x);
Packet4f y, y1, y2;
y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
y = pmadd(y , x, p4f_cephes_log_p2);
y1 = pmadd(y1, x, p4f_cephes_log_p5);
y2 = pmadd(y2, x, p4f_cephes_log_p8);
y = pmadd(y, x3, y1);
y = pmadd(y, x3, y2);
y = pmul(y, x3);
y1 = pmul(e, p4f_cephes_log_q1);
tmp = pmul(x2, p4f_half);
y = padd(y, y1);
x = psub(x, tmp);
y2 = pmul(e, p4f_cephes_log_q2);
x = padd(x, y);
x = padd(x, y2);
// negative arg will be NAN, 0 will be -INF
x = vec_sel(x, p4f_minus_inf, iszero_mask);
x = vec_sel(p4f_minus_nan, x, isvalid_mask);
return x;
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
Packet4f tmp, fx;
Packet4i emm0;
// clamp x
x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
// express exp(x) as exp(g + n*log(2))
fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
fx = pfloor(fx);
tmp = pmul(fx, p4f_cephes_exp_C1);
Packet4f z = pmul(fx, p4f_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
z = pmul(x,x);
Packet4f y = p4f_cephes_exp_p0;
y = pmadd(y, x, p4f_cephes_exp_p1);
y = pmadd(y, x, p4f_cephes_exp_p2);
y = pmadd(y, x, p4f_cephes_exp_p3);
y = pmadd(y, x, p4f_cephes_exp_p4);
y = pmadd(y, x, p4f_cephes_exp_p5);
y = pmadd(y, z, x);
y = padd(y, p4f_1);
// build 2^n
emm0 = vec_cts(fx, 0);
emm0 = vec_add(emm0, p4i_0x7f);
emm0 = vec_sl(emm0, reinterpret_cast<Packet4ui>(p4i_23));
// Altivec's max & min operators just drop silent NaNs. Check NaNs in
// inputs and return them unmodified.
Packet4ui isnumber_mask = reinterpret_cast<Packet4ui>(vec_cmpeq(_x, _x));
return vec_sel(_x, pmax(pmul(y, reinterpret_cast<Packet4f>(emm0)), _x),
isnumber_mask);
}
#ifndef EIGEN_COMP_CLANG
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f prsqrt<Packet4f>(const Packet4f& x)
{
return vec_rsqrt(x);
}
#endif
#ifdef __VSX__
#ifndef EIGEN_COMP_CLANG
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d prsqrt<Packet2d>(const Packet2d& x)
{
return vec_rsqrt(x);
}
#endif
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& x)
{
return vec_sqrt(x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d psqrt<Packet2d>(const Packet2d& x)
{
return vec_sqrt(x);
}
// VSX support varies between different compilers and even different
// versions of the same compiler. For gcc version >= 4.9.3, we can use
// vec_cts to efficiently convert Packet2d to Packet2l. Otherwise, use
// a slow version that works with older compilers.
// Update: apparently vec_cts/vec_ctf intrinsics for 64-bit doubles
// are buggy, https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70963
static inline Packet2l ConvertToPacket2l(const Packet2d& x) {
#if EIGEN_GNUC_AT_LEAST(5, 4) || \
(EIGEN_GNUC_AT(6, 1) && __GNUC_PATCHLEVEL__ >= 1)
return vec_cts(x, 0); // TODO: check clang version.
#else
double tmp[2];
memcpy(tmp, &x, sizeof(tmp));
Packet2l l = { static_cast<long long>(tmp[0]),
static_cast<long long>(tmp[1]) };
return l;
#endif
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& _x)
{
Packet2d x = _x;
Packet2d tmp, fx;
Packet2l emm0;
// clamp x
x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = pmadd(x, p2d_cephes_LOG2EF, p2d_half);
fx = pfloor(fx);
tmp = pmul(fx, p2d_cephes_exp_C1);
Packet2d z = pmul(fx, p2d_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
Packet2d x2 = pmul(x,x);
Packet2d px = p2d_cephes_exp_p0;
px = pmadd(px, x2, p2d_cephes_exp_p1);
px = pmadd(px, x2, p2d_cephes_exp_p2);
px = pmul (px, x);
Packet2d qx = p2d_cephes_exp_q0;
qx = pmadd(qx, x2, p2d_cephes_exp_q1);
qx = pmadd(qx, x2, p2d_cephes_exp_q2);
qx = pmadd(qx, x2, p2d_cephes_exp_q3);
x = pdiv(px,psub(qx,px));
x = pmadd(p2d_2,x,p2d_1);
// build 2^n
emm0 = ConvertToPacket2l(fx);
#ifdef __POWER8_VECTOR__
emm0 = vec_add(emm0, p2l_1023);
emm0 = vec_sl(emm0, p2ul_52);
#else
// Code is a bit complex for POWER7. There is actually a
// vec_xxsldi intrinsic but it is not supported by some gcc versions.
// So we shift (52-32) bits and do a word swap with zeros.
_EIGEN_DECLARE_CONST_Packet4i(1023, 1023);
_EIGEN_DECLARE_CONST_Packet4i(20, 20); // 52 - 32
Packet4i emm04i = reinterpret_cast<Packet4i>(emm0);
emm04i = vec_add(emm04i, p4i_1023);
emm04i = vec_sl(emm04i, reinterpret_cast<Packet4ui>(p4i_20));
static const Packet16uc perm = {
0x14, 0x15, 0x16, 0x17, 0x00, 0x01, 0x02, 0x03,
0x1c, 0x1d, 0x1e, 0x1f, 0x08, 0x09, 0x0a, 0x0b };
#ifdef _BIG_ENDIAN
emm0 = reinterpret_cast<Packet2l>(vec_perm(p4i_ZERO, emm04i, perm));
#else
emm0 = reinterpret_cast<Packet2l>(vec_perm(emm04i, p4i_ZERO, perm));
#endif
#endif
// Altivec's max & min operators just drop silent NaNs. Check NaNs in
// inputs and return them unmodified.
Packet2ul isnumber_mask = reinterpret_cast<Packet2ul>(vec_cmpeq(_x, _x));
return vec_sel(_x, pmax(pmul(x, reinterpret_cast<Packet2d>(emm0)), _x),
isnumber_mask);
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Konstantinos Margaritis <markos@codex.gr>
// Copyright (C) 2008-2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
......@@ -18,13 +18,17 @@ namespace internal {
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
#ifndef EIGEN_HAS_FUSE_CJMADD
#define EIGEN_HAS_FUSE_CJMADD 1
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
#endif
typedef __vector float Packet4f;
......@@ -38,7 +42,7 @@ typedef __vector unsigned char Packet16uc;
// and it doesn't really work to declare them global, so we define macros instead
#define _EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \
Packet4f p4f_##NAME = (Packet4f) vec_splat_s32(X)
Packet4f p4f_##NAME = reinterpret_cast<Packet4f>(vec_splat_s32(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = vec_splat_s32(X)
......@@ -46,60 +50,158 @@ typedef __vector unsigned char Packet16uc;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = pset1<Packet2d>(X)
#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = pset1<Packet2l>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = reinterpret_cast<Packet4f>(pset1<Packet4i>(X))
#define DST_CHAN 1
#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride))
// These constants are endian-agnostic
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16); //{ -16, -16, -16, -16}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1}
static Packet4f p4f_MZERO = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000}
#ifndef __VSX__
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0}
#endif
static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 };
static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 };
// Mask alignment
#ifdef __PPC64__
#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0
#else
#define _EIGEN_MASK_ALIGNMENT 0xfffffff0
#endif
#define _EIGEN_ALIGNED_PTR(x) ((std::ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT)
// Handle endianness properly while loading constants
// Define global static constants:
static Packet4f p4f_COUNTDOWN = { 3.0, 2.0, 1.0, 0.0 };
static Packet4i p4i_COUNTDOWN = { 3, 2, 1, 0 };
static Packet16uc p16uc_REVERSE = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
#ifdef _BIG_ENDIAN
static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
static Packet16uc p16uc_DUPLICATE = {0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16);
static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1);
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0);
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1);
#ifdef __VSX__
static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#endif
static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
#else
static Packet16uc p16uc_FORWARD = p16uc_REVERSE32;
static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_PSET32_WEVEN = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
static Packet16uc p16uc_HALF64_0_16 = vec_sld(vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 0), (Packet16uc)p4i_ZERO, 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
#endif // _BIG_ENDIAN
static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_TRANSPOSE64_HI = p16uc_PSET64_HI + p16uc_HALF64_0_16; //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = p16uc_PSET64_LO + p16uc_HALF64_0_16; //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
#ifdef _BIG_ENDIAN
static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#else
static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_PSET64_HI, p16uc_PSET64_LO, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#endif // _BIG_ENDIAN
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_PPC_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#else
#define EIGEN_PPC_PREFETCH(ADDR) asm( " dcbt [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#endif
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
typedef Packet4f half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
// FIXME check the Has*
HasHalfPacket = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasSqrt = 0
HasExp = 1,
#ifdef __VSX__
HasSqrt = 1,
#if !EIGEN_COMP_CLANG
HasRsqrt = 1,
#else
HasRsqrt = 0,
#endif
#else
HasSqrt = 0,
HasRsqrt = 0,
#endif
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
size = 4,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 0,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
/*
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
inline std::ostream & operator <<(std::ostream & s, const Packet16uc & v)
{
union {
Packet16uc v;
unsigned char n[16];
} vt;
vt.v = v;
for (int i=0; i< 16; i++)
s << (int)vt.n[i] << ", ";
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4f & v)
{
union {
......@@ -133,89 +235,136 @@ inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
// Need to define them first or we get specialization after instantiation errors
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from)
{
union {
Packet4bi v;
unsigned int n[4];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
*/
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
float EIGEN_ALIGN16 af[4];
af[0] = from;
Packet4f vc = vec_ld(0, af);
vc = vec_splat(vc, 0);
return vc;
EIGEN_DEBUG_ALIGNED_LOAD
#ifdef __VSX__
return vec_vsx_ld(0, from);
#else
return vec_ld(0, from);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
int EIGEN_ALIGN16 ai[4];
ai[0] = from;
Packet4i vc = vec_ld(0, ai);
vc = vec_splat(vc, 0);
return vc;
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
#ifdef __VSX__
return vec_vsx_ld(0, from);
#else
return vec_ld(0, from);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return vec_add(pset1<Packet4f>(a), p4f_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return vec_add(pset1<Packet4i>(a), p4i_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_add(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_add(a,b); }
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from)
{
EIGEN_DEBUG_ALIGNED_STORE
#ifdef __VSX__
vec_vsx_st(from, 0, to);
#else
vec_st(from, 0, to);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_sub(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_sub(a,b); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from)
{
EIGEN_DEBUG_ALIGNED_STORE
#ifdef __VSX__
vec_vsx_st(from, 0, to);
#else
vec_st(from, 0, to);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return psub<Packet4f>(p4f_ZERO, a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return psub<Packet4i>(p4i_ZERO, a); }
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
Packet4f v = {from, from, from, from};
return v;
}
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
Packet4i v = {from, from, from, from};
return v;
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
a3 = pload<Packet4f>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
a3 = vec_splat(a3, 3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4i>(const int *a,
Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3)
{
a3 = pload<Packet4i>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
a3 = vec_splat(a3, 3);
}
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b,p4f_ZERO); }
/* Commented out: it's actually slower than processing it scalar
*
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
float EIGEN_ALIGN16 af[4];
af[0] = from[0*stride];
af[1] = from[1*stride];
af[2] = from[2*stride];
af[3] = from[3*stride];
return pload<Packet4f>(af);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
return pload<Packet4i>(ai);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
// Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec
//Set up constants, variables
Packet4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel;
float EIGEN_ALIGN16 af[4];
pstore<float>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
to[2*stride] = af[2];
to[3*stride] = af[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
pstore<int>((int *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
to[3*stride] = ai[3];
}
// Get the absolute values
a1 = vec_abs(a);
b1 = vec_abs(b);
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return pset1<Packet4f>(a) + p4f_COUNTDOWN; }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return pset1<Packet4i>(a) + p4i_COUNTDOWN; }
// Get the signs using xor
Packet4bi sgn = (Packet4bi) vec_cmplt(vec_xor(a, b), p4i_ZERO);
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return a + b; }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return a + b; }
// Do the multiplication for the asbolute values.
bswap = (Packet4i) vec_rl((Packet4ui) b1, (Packet4ui) p4i_MINUS16 );
low_prod = vec_mulo((Packet8i) a1, (Packet8i)b1);
high_prod = vec_msum((Packet8i) a1, (Packet8i) bswap, p4i_ZERO);
high_prod = (Packet4i) vec_sl((Packet4ui) high_prod, (Packet4ui) p4i_MINUS16);
prod = vec_add( low_prod, high_prod );
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return a - b; }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return a - b; }
// NOR the product and select only the negative elements according to the sign mask
prod_ = vec_nor(prod, prod);
prod_ = vec_sel(p4i_ZERO, prod_, sgn);
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return p4f_ZERO - a; }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return p4i_ZERO - a; }
// Add 1 to the result to get the negative numbers
v1sel = vec_sel(p4i_ZERO, p4i_ONE, sgn);
prod_ = vec_add(prod_, v1sel);
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
// Merge the results back to the final vector.
prod = vec_sel(prod, prod_, sgn);
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b, p4f_MZERO); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return a * b; }
return prod;
}
*/
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
Packet4f t, y_0, y_1, res;
#ifndef __VSX__ // VSX actually provides a div instruction
Packet4f t, y_0, y_1;
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
y_0 = vec_re(b);
......@@ -224,8 +373,10 @@ template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const
t = vec_nmsub(y_0, b, p4f_ONE);
y_1 = vec_madd(y_0, t, y_0);
res = vec_madd(a, y_1, p4f_ZERO);
return res;
return vec_madd(a, y_1, p4f_MZERO);
#else
return vec_div(a, b);
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
......@@ -234,8 +385,8 @@ template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, co
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a,b,c); }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return a*b + c; }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
......@@ -243,7 +394,6 @@ template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
......@@ -256,13 +406,14 @@ template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a) { return vec_round(a); }
template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) { return vec_ceil(a); }
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) { return vec_floor(a); }
#ifdef _BIG_ENDIAN
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
Packet16uc MSQ, LSQ;
Packet16uc mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
......@@ -282,25 +433,36 @@ template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
mask = vec_lvsl(0, from); // create the permute mask
return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data
}
#else
// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
return (Packet4i) vec_vsx_ld((long)from & 15, (const int*) _EIGEN_ALIGNED_PTR(from));
}
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_UNALIGNED_LOAD
return (Packet4f) vec_vsx_ld((long)from & 15, (const float*) _EIGEN_ALIGNED_PTR(from));
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
Packet4f p;
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4f>(from);
else p = ploadu<Packet4f>(from);
return vec_perm(p, p, p16uc_DUPLICATE);
if((std::ptrdiff_t(from) % 16) == 0) p = pload<Packet4f>(from);
else p = ploadu<Packet4f>(from);
return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p;
if((ptrdiff_t(&from) % 16) == 0) p = pload<Packet4i>(from);
else p = ploadu<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE);
if((std::ptrdiff_t(from) % 16) == 0) p = pload<Packet4i>(from);
else p = ploadu<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
#ifdef _BIG_ENDIAN
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
{
EIGEN_DEBUG_UNALIGNED_STORE
......@@ -337,15 +499,33 @@ template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& f
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
#else
// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from)
{
EIGEN_DEBUG_ALIGNED_STORE
vec_vsx_st(from, (long)to & 15, (int*) _EIGEN_ALIGNED_PTR(to));
}
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
{
EIGEN_DEBUG_ALIGNED_STORE
vec_vsx_st(from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to));
}
#endif
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_PPC_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_PPC_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x; vec_ste(a, 0, &x); return x; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x; vec_ste(a, 0, &x); return x; }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
{
return reinterpret_cast<Packet4f>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE32));
}
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{
return reinterpret_cast<Packet4i>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE32)); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
......@@ -353,10 +533,10 @@ template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f b, sum;
b = (Packet4f) vec_sld(a, a, 8);
sum = vec_add(a, b);
b = (Packet4f) vec_sld(sum, sum, 4);
sum = vec_add(sum, b);
b = vec_sld(a, a, 8);
sum = a + b;
b = vec_sld(sum, sum, 4);
sum += b;
return pfirst(sum);
}
......@@ -379,11 +559,11 @@ template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
sum[0] = sum[0] + sum[1];
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
sum[1] = sum[2] + sum[3];
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
sum[0] = sum[0] + sum[1];
return sum[0];
}
......@@ -392,7 +572,11 @@ template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i sum;
sum = vec_sums(a, p4i_ZERO);
#ifdef _BIG_ENDIAN
sum = vec_sld(sum, p4i_ZERO, 12);
#else
sum = vec_sld(p4i_ZERO, sum, 4);
#endif
return pfirst(sum);
}
......@@ -415,11 +599,11 @@ template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
// Now do the summation:
// Lines 0+1
sum[0] = vec_add(sum[0], sum[1]);
sum[0] = sum[0] + sum[1];
// Lines 2+3
sum[1] = vec_add(sum[2], sum[3]);
sum[1] = sum[2] + sum[3];
// Add the results
sum[0] = vec_add(sum[0], sum[1]);
sum[0] = sum[0] + sum[1];
return sum[0];
}
......@@ -429,8 +613,8 @@ template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
Packet4f prod;
prod = pmul(a, (Packet4f)vec_sld(a, a, 8));
return pfirst(pmul(prod, (Packet4f)vec_sld(prod, prod, 4)));
prod = pmul(a, vec_sld(a, a, 8));
return pfirst(pmul(prod, vec_sld(prod, prod, 4)));
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
......@@ -479,8 +663,25 @@ struct palign_impl<Offset,Packet4f>
{
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
{
if (Offset!=0)
first = vec_sld(first, second, Offset*4);
#ifdef _BIG_ENDIAN
switch (Offset % 4) {
case 1:
first = vec_sld(first, second, 4); break;
case 2:
first = vec_sld(first, second, 8); break;
case 3:
first = vec_sld(first, second, 12); break;
}
#else
switch (Offset % 4) {
case 1:
first = vec_sld(second, first, 12); break;
case 2:
first = vec_sld(second, first, 8); break;
case 3:
first = vec_sld(second, first, 4); break;
}
#endif
}
};
......@@ -489,11 +690,342 @@ struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
if (Offset!=0)
first = vec_sld(first, second, Offset*4);
#ifdef _BIG_ENDIAN
switch (Offset % 4) {
case 1:
first = vec_sld(first, second, 4); break;
case 2:
first = vec_sld(first, second, 8); break;
case 3:
first = vec_sld(first, second, 12); break;
}
#else
switch (Offset % 4) {
case 1:
first = vec_sld(second, first, 12); break;
case 2:
first = vec_sld(second, first, 8); break;
case 3:
first = vec_sld(second, first, 4); break;
}
#endif
}
};
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
Packet4f t0, t1, t2, t3;
t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]);
t1 = vec_mergel(kernel.packet[0], kernel.packet[2]);
t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]);
t3 = vec_mergel(kernel.packet[1], kernel.packet[3]);
kernel.packet[0] = vec_mergeh(t0, t2);
kernel.packet[1] = vec_mergel(t0, t2);
kernel.packet[2] = vec_mergeh(t1, t3);
kernel.packet[3] = vec_mergel(t1, t3);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
Packet4i t0, t1, t2, t3;
t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]);
t1 = vec_mergel(kernel.packet[0], kernel.packet[2]);
t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]);
t3 = vec_mergel(kernel.packet[1], kernel.packet[3]);
kernel.packet[0] = vec_mergeh(t0, t2);
kernel.packet[1] = vec_mergel(t0, t2);
kernel.packet[2] = vec_mergeh(t1, t3);
kernel.packet[3] = vec_mergel(t1, t3);
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] };
Packet4ui mask = reinterpret_cast<Packet4ui>(vec_cmpeq(reinterpret_cast<Packet4ui>(select), reinterpret_cast<Packet4ui>(p4i_ONE)));
return vec_sel(elsePacket, thenPacket, mask);
}
template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) {
Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] };
Packet4ui mask = reinterpret_cast<Packet4ui>(vec_cmpeq(reinterpret_cast<Packet4ui>(select), reinterpret_cast<Packet4ui>(p4i_ONE)));
return vec_sel(elsePacket, thenPacket, mask);
}
//---------- double ----------
#ifdef __VSX__
typedef __vector double Packet2d;
typedef __vector unsigned long long Packet2ul;
typedef __vector long long Packet2l;
#if EIGEN_COMP_CLANG
typedef Packet2ul Packet2bl;
#else
typedef __vector __bool long Packet2bl;
#endif
static Packet2l p2l_ONE = { 1, 1 };
static Packet2l p2l_ZERO = reinterpret_cast<Packet2l>(p4i_ZERO);
static Packet2d p2d_ONE = { 1.0, 1.0 };
static Packet2d p2d_ZERO = reinterpret_cast<Packet2d>(p4f_ZERO);
static Packet2d p2d_MZERO = { -0.0, -0.0 };
#ifdef _BIG_ENDIAN
static Packet2d p2d_COUNTDOWN = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(p2d_ZERO), reinterpret_cast<Packet4f>(p2d_ONE), 8));
#else
static Packet2d p2d_COUNTDOWN = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(p2d_ONE), reinterpret_cast<Packet4f>(p2d_ZERO), 8));
#endif
template<int index> Packet2d vec_splat_dbl(Packet2d& a);
template<> EIGEN_STRONG_INLINE Packet2d vec_splat_dbl<0>(Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(a, a, p16uc_PSET64_HI));
}
template<> EIGEN_STRONG_INLINE Packet2d vec_splat_dbl<1>(Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(a, a, p16uc_PSET64_LO));
}
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 1,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
inline std::ostream & operator <<(std::ostream & s, const Packet2l & v)
{
union {
Packet2l v;
int64_t n[2];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2d & v)
{
union {
Packet2d v;
double n[2];
} vt;
vt.v = v;
s << vt.n[0] << ", " << vt.n[1];
return s;
}
// Need to define them first or we get specialization after instantiation errors
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
#ifdef __VSX__
return vec_vsx_ld(0, from);
#else
return vec_ld(0, from);
#endif
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from)
{
EIGEN_DEBUG_ALIGNED_STORE
#ifdef __VSX__
vec_vsx_st(from, 0, to);
#else
vec_st(from, 0, to);
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) {
Packet2d v = {from, from};
return v;
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
a1 = pload<Packet2d>(a);
a0 = vec_splat_dbl<0>(a1);
a1 = vec_splat_dbl<1>(a1);
a3 = pload<Packet2d>(a+2);
a2 = vec_splat_dbl<0>(a3);
a3 = vec_splat_dbl<1>(a3);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
double EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet2d>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
double EIGEN_ALIGN16 af[2];
pstore<double>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return pset1<Packet2d>(a) + p2d_COUNTDOWN; }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return a + b; }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return a - b; }
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return p2d_ZERO - a; }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_madd(a,b,p2d_MZERO); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_div(a,b); }
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) { return vec_round(a); }
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return vec_ceil(a); }
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return vec_floor(a); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
return (Packet2d) vec_vsx_ld((long)from & 15, (const double*) _EIGEN_ALIGNED_PTR(from));
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
Packet2d p;
if((std::ptrdiff_t(from) % 16) == 0) p = pload<Packet2d>(from);
else p = ploadu<Packet2d>(from);
return vec_splat_dbl<0>(p);
}
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from)
{
EIGEN_DEBUG_ALIGNED_STORE
vec_vsx_st((Packet4f)from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to));
}
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_PPC_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore<double>(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE64));
}
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
Packet2d b, sum;
b = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(a), reinterpret_cast<Packet4f>(a), 8));
sum = a + b;
return pfirst<Packet2d>(sum);
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
Packet2d v[2], sum;
v[0] = vecs[0] + reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(vecs[0]), reinterpret_cast<Packet4f>(vecs[0]), 8));
v[1] = vecs[1] + reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(vecs[1]), reinterpret_cast<Packet4f>(vecs[1]), 8));
#ifdef _BIG_ENDIAN
sum = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(v[0]), reinterpret_cast<Packet4f>(v[1]), 8));
#else
sum = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4f>(v[1]), reinterpret_cast<Packet4f>(v[0]), 8));
#endif
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(pmul(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(a), reinterpret_cast<Packet4ui>(a), 8))));
}
// min
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(pmin(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(a), reinterpret_cast<Packet4ui>(a), 8))));
}
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(pmax(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(a), reinterpret_cast<Packet4ui>(a), 8))));
}
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset == 1)
#ifdef _BIG_ENDIAN
first = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(first), reinterpret_cast<Packet4ui>(second), 8));
#else
first = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(second), reinterpret_cast<Packet4ui>(first), 8));
#endif
}
};
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
Packet2d t0, t1;
t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI);
t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO);
kernel.packet[0] = t0;
kernel.packet[1] = t1;
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
Packet2l select = { ifPacket.select[0], ifPacket.select[1] };
Packet2bl mask = vec_cmpeq(reinterpret_cast<Packet2d>(select), reinterpret_cast<Packet2d>(p2l_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
#endif // __VSX__
} // end namespace internal
} // end namespace Eigen
......
ADD_SUBDIRECTORY(SSE)
ADD_SUBDIRECTORY(AltiVec)
ADD_SUBDIRECTORY(NEON)
ADD_SUBDIRECTORY(Default)
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_CUDA_H
#define EIGEN_COMPLEX_CUDA_H
// clang-format off
namespace Eigen {
namespace internal {
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
// Many std::complex methods such as operator+, operator-, operator* and
// operator/ are not constexpr. Due to this, clang does not treat them as device
// functions and thus Eigen functors making use of these operators fail to
// compile. Here, we manually specialize these functors for complex types when
// building for CUDA to avoid non-constexpr methods.
// Sum
template<typename T> struct scalar_sum_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
typedef typename std::complex<T> result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
return std::complex<T>(numext::real(a) + numext::real(b),
numext::imag(a) + numext::imag(b));
}
};
template<typename T> struct scalar_sum_op<std::complex<T>, std::complex<T> > : scalar_sum_op<const std::complex<T>, const std::complex<T> > {};
// Difference
template<typename T> struct scalar_difference_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
typedef typename std::complex<T> result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
return std::complex<T>(numext::real(a) - numext::real(b),
numext::imag(a) - numext::imag(b));
}
};
template<typename T> struct scalar_difference_op<std::complex<T>, std::complex<T> > : scalar_difference_op<const std::complex<T>, const std::complex<T> > {};
// Product
template<typename T> struct scalar_product_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
enum {
Vectorizable = packet_traits<std::complex<T>>::HasMul
};
typedef typename std::complex<T> result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
const T a_real = numext::real(a);
const T a_imag = numext::imag(a);
const T b_real = numext::real(b);
const T b_imag = numext::imag(b);
return std::complex<T>(a_real * b_real - a_imag * b_imag,
a_real * b_imag + a_imag * b_real);
}
};
template<typename T> struct scalar_product_op<std::complex<T>, std::complex<T> > : scalar_product_op<const std::complex<T>, const std::complex<T> > {};
// Quotient
template<typename T> struct scalar_quotient_op<const std::complex<T>, const std::complex<T> > : binary_op_base<const std::complex<T>, const std::complex<T> > {
enum {
Vectorizable = packet_traits<std::complex<T>>::HasDiv
};
typedef typename std::complex<T> result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
const T a_real = numext::real(a);
const T a_imag = numext::imag(a);
const T b_real = numext::real(b);
const T b_imag = numext::imag(b);
const T norm = T(1) / (b_real * b_real + b_imag * b_imag);
return std::complex<T>((a_real * b_real + a_imag * b_imag) * norm,
(a_imag * b_real - a_real * b_imag) * norm);
}
};
template<typename T> struct scalar_quotient_op<std::complex<T>, std::complex<T> > : scalar_quotient_op<const std::complex<T>, const std::complex<T> > {};
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_CUDA_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The conversion routines are Copyright (c) Fabian Giesen, 2016.
// The original license follows:
//
// Copyright (c) Fabian Giesen, 2016
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Standard 16-bit float type, mostly useful for GPUs. Defines a new
// type Eigen::half (inheriting from CUDA's __half struct) with
// operator overloads such that it behaves basically as an arithmetic
// type. It will be quite slow on CPUs (so it is recommended to stay
// in fp32 for CPUs, except for simple parameter conversions, I/O
// to disk and the likes), but fast on GPUs.
#ifndef EIGEN_HALF_CUDA_H
#define EIGEN_HALF_CUDA_H
#if __cplusplus > 199711L
#define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type()
#else
#define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type()
#endif
namespace Eigen {
struct half;
namespace half_impl {
#if !defined(EIGEN_HAS_CUDA_FP16)
// Make our own __half definition that is similar to CUDA's.
struct __half {
EIGEN_DEVICE_FUNC __half() {}
explicit EIGEN_DEVICE_FUNC __half(unsigned short raw) : x(raw) {}
unsigned short x;
};
#endif
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff);
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h);
struct half_base : public __half {
EIGEN_DEVICE_FUNC half_base() {}
EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half(h) {}
EIGEN_DEVICE_FUNC half_base(const __half& h) : __half(h) {}
};
} // namespace half_impl
// Class definition.
struct half : public half_impl::half_base {
#if !defined(EIGEN_HAS_CUDA_FP16)
typedef half_impl::__half __half;
#endif
EIGEN_DEVICE_FUNC half() {}
EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {}
EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {}
explicit EIGEN_DEVICE_FUNC half(bool b)
: half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {}
template<class T>
explicit EIGEN_DEVICE_FUNC half(const T& val)
: half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {}
explicit EIGEN_DEVICE_FUNC half(float f)
: half_impl::half_base(half_impl::float_to_half_rtne(f)) {}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const {
// +0.0 and -0.0 become false, everything else becomes true.
return (x & 0x7fff) != 0;
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const {
return static_cast<signed char>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const {
return static_cast<unsigned char>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const {
return static_cast<short>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const {
return static_cast<unsigned short>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const {
return static_cast<int>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const {
return static_cast<unsigned int>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const {
return static_cast<long>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const {
return static_cast<unsigned long>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const {
return static_cast<long long>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const {
return static_cast<unsigned long long>(half_to_float(*this));
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const {
return half_impl::half_to_float(*this);
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const {
return static_cast<double>(half_impl::half_to_float(*this));
}
EIGEN_DEVICE_FUNC half& operator=(const half& other) {
x = other.x;
return *this;
}
};
namespace half_impl {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
// Intrinsics for native fp16 support. Note that on current hardware,
// these are no faster than fp32 arithmetic (you need to use the half2
// versions to get the ALU speed increased), but you do save the
// conversion steps back and forth.
__device__ half operator + (const half& a, const half& b) {
return __hadd(a, b);
}
__device__ half operator * (const half& a, const half& b) {
return __hmul(a, b);
}
__device__ half operator - (const half& a, const half& b) {
return __hsub(a, b);
}
__device__ half operator / (const half& a, const half& b) {
float num = __half2float(a);
float denom = __half2float(b);
return __float2half(num / denom);
}
__device__ half operator - (const half& a) {
return __hneg(a);
}
__device__ half& operator += (half& a, const half& b) {
a = a + b;
return a;
}
__device__ half& operator *= (half& a, const half& b) {
a = a * b;
return a;
}
__device__ half& operator -= (half& a, const half& b) {
a = a - b;
return a;
}
__device__ half& operator /= (half& a, const half& b) {
a = a / b;
return a;
}
__device__ bool operator == (const half& a, const half& b) {
return __heq(a, b);
}
__device__ bool operator != (const half& a, const half& b) {
return __hne(a, b);
}
__device__ bool operator < (const half& a, const half& b) {
return __hlt(a, b);
}
__device__ bool operator <= (const half& a, const half& b) {
return __hle(a, b);
}
__device__ bool operator > (const half& a, const half& b) {
return __hgt(a, b);
}
__device__ bool operator >= (const half& a, const half& b) {
return __hge(a, b);
}
#else // Emulate support for half floats
// Definitions for CPUs and older CUDA, mostly working through conversion
// to/from fp32.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
return half(float(a) + float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
return half(float(a) * float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
return half(float(a) - float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
return half(float(a) / float(b));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) {
half result;
result.x = a.x ^ 0x8000;
return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
a = half(float(a) + float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
a = half(float(a) * float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
a = half(float(a) - float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
a = half(float(a) / float(b));
return a;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
return float(a) == float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
return float(a) != float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
return float(a) < float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) {
return float(a) <= float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
return float(a) > float(b);
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) {
return float(a) >= float(b);
}
#endif // Emulate support for half floats
// Division by an index. Do it in full float precision to avoid accuracy
// issues in converting the denominator to half.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
return half(static_cast<float>(a) / static_cast<float>(b));
}
// Conversion routines, including fallbacks for the host or older CUDA.
// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of
// these in hardware. If we need more performance on older/other CPUs, they are
// also possible to vectorize directly.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) {
__half h;
h.x = x;
return h;
}
union FP32 {
unsigned int u;
float f;
};
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __float2half(ff);
#elif defined(EIGEN_HAS_FP16_C)
__half h;
h.x = _cvtss_sh(ff, 0);
return h;
#else
FP32 f; f.f = ff;
const FP32 f32infty = { 255 << 23 };
const FP32 f16max = { (127 + 16) << 23 };
const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
unsigned int sign_mask = 0x80000000u;
__half o;
o.x = static_cast<unsigned short>(0x0u);
unsigned int sign = f.u & sign_mask;
f.u ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code
// (since there's no unsigned PCMPGTD).
if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set)
o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
} else { // (De)normalized number or zero
if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero
// use a magic value to align our 10 mantissa bits at the bottom of
// the float. as long as FP addition is round-to-nearest-even this
// just works.
f.f += denorm_magic.f;
// and one integer subtract of the bias later, we have our final float!
o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
} else {
unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
// update exponent, rounding bias part 1
f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
// rounding bias part 2
f.u += mant_odd;
// take the bits!
o.x = static_cast<unsigned short>(f.u >> 13);
}
}
o.x |= static_cast<unsigned short>(sign >> 16);
return o;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __half2float(h);
#elif defined(EIGEN_HAS_FP16_C)
return _cvtsh_ss(h.x);
#else
const FP32 magic = { 113 << 23 };
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
FP32 o;
o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits
unsigned int exp = shifted_exp & o.u; // just the exponent
o.u += (127 - 15) << 23; // exponent adjust
// handle exponent special cases
if (exp == shifted_exp) { // Inf/NaN?
o.u += (128 - 16) << 23; // extra exp adjust
} else if (exp == 0) { // Zero/Denormal?
o.u += 1 << 23; // extra exp adjust
o.f -= magic.f; // renormalize
}
o.u |= (h.x & 0x8000) << 16; // sign bit
return o.f;
#endif
}
// --- standard functions ---
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) {
return (a.x & 0x7fff) == 0x7c00;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hisnan(a);
#else
return (a.x & 0x7fff) > 0x7c00;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) {
return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) {
half result;
result.x = a.x & 0x7FFF;
return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) {
return half(::expf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return Eigen::half(::hlog(a));
#else
return half(::logf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) {
return half(numext::log1p(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) {
return half(::log10f(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) {
return half(::sqrtf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) {
return half(::powf(float(a), float(b)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) {
return half(::sinf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) {
return half(::cosf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) {
return half(::tanf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) {
return half(::tanhf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) {
return half(::floorf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) {
return half(::ceilf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hlt(b, a) ? b : a;
#else
const float f1 = static_cast<float>(a);
const float f2 = static_cast<float>(b);
return f2 < f1 ? b : a;
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hlt(a, b) ? b : a;
#else
const float f1 = static_cast<float>(a);
const float f2 = static_cast<float>(b);
return f1 < f2 ? b : a;
#endif
}
EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) {
os << static_cast<float>(v);
return os;
}
} // end namespace half_impl
// import Eigen::half_impl::half into Eigen namespace
// using half_impl::half;
namespace internal {
template<>
struct random_default_impl<half, false, false>
{
static inline half run(const half& x, const half& y)
{
return x + (y-x) * half(float(std::rand()) / float(RAND_MAX));
}
static inline half run()
{
return run(half(-1.f), half(1.f));
}
};
template<> struct is_arithmetic<half> { enum { value = true }; };
} // end namespace internal
} // end namespace Eigen
namespace std {
template<>
struct numeric_limits<Eigen::half> {
static const bool is_specialized = true;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_present;
static const bool has_denorm_loss = false;
static const std::float_round_style round_style = std::round_to_nearest;
static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;
static const int digits = 11;
static const int digits10 = 2;
//static const int max_digits10 = ;
static const int radix = 2;
static const int min_exponent = -13;
static const int min_exponent10 = -4;
static const int max_exponent = 16;
static const int max_exponent10 = 4;
static const bool traps = true;
static const bool tinyness_before = false;
static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); }
static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); }
static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); }
static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); }
static Eigen::half round_error() { return Eigen::half(0.5); }
static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); }
static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); }
static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); }
};
}
namespace Eigen {
template<> struct NumTraits<Eigen::half>
: GenericNumTraits<Eigen::half>
{
enum {
IsSigned = true,
IsInteger = false,
IsComplex = false,
RequireInitialization = false
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() {
return half_impl::raw_uint16_to_half(0x0800);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return Eigen::half(1e-2f); }
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() {
return half_impl::raw_uint16_to_half(0x7bff);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() {
return half_impl::raw_uint16_to_half(0xfbff);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() {
return half_impl::raw_uint16_to_half(0x7c00);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() {
return half_impl::raw_uint16_to_half(0x7c01);
}
};
} // end namespace Eigen
// C-like standard mathematical functions and trancendentals.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) {
Eigen::half result;
result.x = a.x & 0x7FFF;
return result;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) {
return Eigen::half(::expf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) {
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return Eigen::half(::hlog(a));
#else
return Eigen::half(::logf(float(a)));
#endif
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) {
return Eigen::half(::sqrtf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) {
return Eigen::half(::powf(float(a), float(b)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) {
return Eigen::half(::floorf(float(a)));
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) {
return Eigen::half(::ceilf(float(a)));
}
namespace std {
#if __cplusplus > 199711L
template <>
struct hash<Eigen::half> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
return static_cast<std::size_t>(a.x);
}
};
#endif
} // end namespace std
// Add the missing shfl_xor intrinsic
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width));
}
#endif
// ldg() has an overload for __half, but we also need one for Eigen::half.
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
return Eigen::half_impl::raw_uint16_to_half(
__ldg(reinterpret_cast<const unsigned short*>(ptr)));
}
#endif
#if defined(__CUDA_ARCH__)
namespace Eigen {
namespace numext {
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isnan)(const Eigen::half& h) {
return (half_impl::isnan)(h);
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isinf)(const Eigen::half& h) {
return (half_impl::isinf)(h);
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
bool (isfinite)(const Eigen::half& h) {
return (half_impl::isfinite)(h);
}
} // namespace Eigen
} // namespace numext
#endif
#endif // EIGEN_HALF_CUDA_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATH_FUNCTIONS_CUDA_H
#define EIGEN_MATH_FUNCTIONS_CUDA_H
namespace Eigen {
namespace internal {
// Make sure this is only available when targeting a GPU: we don't want to
// introduce conflicts between these packet_traits definitions and the ones
// we'll use on the host side (SSE, AVX, ...)
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 plog<float4>(const float4& a)
{
return make_float4(logf(a.x), logf(a.y), logf(a.z), logf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 plog<double2>(const double2& a)
{
using ::log;
return make_double2(log(a.x), log(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 plog1p<float4>(const float4& a)
{
return make_float4(log1pf(a.x), log1pf(a.y), log1pf(a.z), log1pf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 plog1p<double2>(const double2& a)
{
return make_double2(log1p(a.x), log1p(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 pexp<float4>(const float4& a)
{
return make_float4(expf(a.x), expf(a.y), expf(a.z), expf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 pexp<double2>(const double2& a)
{
using ::exp;
return make_double2(exp(a.x), exp(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 psqrt<float4>(const float4& a)
{
return make_float4(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z), sqrtf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 psqrt<double2>(const double2& a)
{
using ::sqrt;
return make_double2(sqrt(a.x), sqrt(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 prsqrt<float4>(const float4& a)
{
return make_float4(rsqrtf(a.x), rsqrtf(a.y), rsqrtf(a.z), rsqrtf(a.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 prsqrt<double2>(const double2& a)
{
return make_double2(rsqrt(a.x), rsqrt(a.y));
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_CUDA_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_CUDA_H
#define EIGEN_PACKET_MATH_CUDA_H
namespace Eigen {
namespace internal {
// Make sure this is only available when targeting a GPU: we don't want to
// introduce conflicts between these packet_traits definitions and the ones
// we'll use on the host side (SSE, AVX, ...)
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
template<> struct is_arithmetic<float4> { enum { value = true }; };
template<> struct is_arithmetic<double2> { enum { value = true }; };
template<> struct packet_traits<float> : default_packet_traits
{
typedef float4 type;
typedef float4 half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasHalfPacket = 0,
HasDiv = 1,
HasSin = 0,
HasCos = 0,
HasLog = 1,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasDiGamma = 1,
HasZeta = 1,
HasPolygamma = 1,
HasErf = 1,
HasErfc = 1,
HasIGamma = 1,
HasIGammac = 1,
HasBetaInc = 1,
HasBlend = 0,
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef double2 type;
typedef double2 half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasDiv = 1,
HasLog = 1,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasDiGamma = 1,
HasZeta = 1,
HasPolygamma = 1,
HasErf = 1,
HasErfc = 1,
HasIGamma = 1,
HasIGammac = 1,
HasBetaInc = 1,
HasBlend = 0,
};
};
template<> struct unpacket_traits<float4> { typedef float type; enum {size=4, alignment=Aligned16}; typedef float4 half; };
template<> struct unpacket_traits<double2> { typedef double type; enum {size=2, alignment=Aligned16}; typedef double2 half; };
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pset1<float4>(const float& from) {
return make_float4(from, from, from, from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pset1<double2>(const double& from) {
return make_double2(from, from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 plset<float4>(const float& a) {
return make_float4(a, a+1, a+2, a+3);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 plset<double2>(const double& a) {
return make_double2(a, a+1);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 padd<float4>(const float4& a, const float4& b) {
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 padd<double2>(const double2& a, const double2& b) {
return make_double2(a.x+b.x, a.y+b.y);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 psub<float4>(const float4& a, const float4& b) {
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 psub<double2>(const double2& a, const double2& b) {
return make_double2(a.x-b.x, a.y-b.y);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pnegate(const float4& a) {
return make_float4(-a.x, -a.y, -a.z, -a.w);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pnegate(const double2& a) {
return make_double2(-a.x, -a.y);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pconj(const float4& a) { return a; }
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pconj(const double2& a) { return a; }
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmul<float4>(const float4& a, const float4& b) {
return make_float4(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmul<double2>(const double2& a, const double2& b) {
return make_double2(a.x*b.x, a.y*b.y);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pdiv<float4>(const float4& a, const float4& b) {
return make_float4(a.x/b.x, a.y/b.y, a.z/b.z, a.w/b.w);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pdiv<double2>(const double2& a, const double2& b) {
return make_double2(a.x/b.x, a.y/b.y);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmin<float4>(const float4& a, const float4& b) {
return make_float4(fminf(a.x, b.x), fminf(a.y, b.y), fminf(a.z, b.z), fminf(a.w, b.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmin<double2>(const double2& a, const double2& b) {
return make_double2(fmin(a.x, b.x), fmin(a.y, b.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmax<float4>(const float4& a, const float4& b) {
return make_float4(fmaxf(a.x, b.x), fmaxf(a.y, b.y), fmaxf(a.z, b.z), fmaxf(a.w, b.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmax<double2>(const double2& a, const double2& b) {
return make_double2(fmax(a.x, b.x), fmax(a.y, b.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pload<float4>(const float* from) {
return *reinterpret_cast<const float4*>(from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pload<double2>(const double* from) {
return *reinterpret_cast<const double2*>(from);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 ploadu<float4>(const float* from) {
return make_float4(from[0], from[1], from[2], from[3]);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 ploadu<double2>(const double* from) {
return make_double2(from[0], from[1]);
}
template<> EIGEN_STRONG_INLINE float4 ploaddup<float4>(const float* from) {
return make_float4(from[0], from[0], from[1], from[1]);
}
template<> EIGEN_STRONG_INLINE double2 ploaddup<double2>(const double* from) {
return make_double2(from[0], from[0]);
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore<float>(float* to, const float4& from) {
*reinterpret_cast<float4*>(to) = from;
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore<double>(double* to, const double2& from) {
*reinterpret_cast<double2*>(to) = from;
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const float4& from) {
to[0] = from.x;
to[1] = from.y;
to[2] = from.z;
to[3] = from.w;
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const double2& from) {
to[0] = from.x;
to[1] = from.y;
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro<float4, Aligned>(const float* from) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
return __ldg((const float4*)from);
#else
return make_float4(from[0], from[1], from[2], from[3]);
#endif
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro<double2, Aligned>(const double* from) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
return __ldg((const double2*)from);
#else
return make_double2(from[0], from[1]);
#endif
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro<float4, Unaligned>(const float* from) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
return make_float4(__ldg(from+0), __ldg(from+1), __ldg(from+2), __ldg(from+3));
#else
return make_float4(from[0], from[1], from[2], from[3]);
#endif
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro<double2, Unaligned>(const double* from) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350
return make_double2(__ldg(from+0), __ldg(from+1));
#else
return make_double2(from[0], from[1]);
#endif
}
template<> EIGEN_DEVICE_FUNC inline float4 pgather<float, float4>(const float* from, Index stride) {
return make_float4(from[0*stride], from[1*stride], from[2*stride], from[3*stride]);
}
template<> EIGEN_DEVICE_FUNC inline double2 pgather<double, double2>(const double* from, Index stride) {
return make_double2(from[0*stride], from[1*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, float4>(float* to, const float4& from, Index stride) {
to[stride*0] = from.x;
to[stride*1] = from.y;
to[stride*2] = from.z;
to[stride*3] = from.w;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, double2>(double* to, const double2& from, Index stride) {
to[stride*0] = from.x;
to[stride*1] = from.y;
}
template<> EIGEN_DEVICE_FUNC inline float pfirst<float4>(const float4& a) {
return a.x;
}
template<> EIGEN_DEVICE_FUNC inline double pfirst<double2>(const double2& a) {
return a.x;
}
template<> EIGEN_DEVICE_FUNC inline float predux<float4>(const float4& a) {
return a.x + a.y + a.z + a.w;
}
template<> EIGEN_DEVICE_FUNC inline double predux<double2>(const double2& a) {
return a.x + a.y;
}
template<> EIGEN_DEVICE_FUNC inline float predux_max<float4>(const float4& a) {
return fmaxf(fmaxf(a.x, a.y), fmaxf(a.z, a.w));
}
template<> EIGEN_DEVICE_FUNC inline double predux_max<double2>(const double2& a) {
return fmax(a.x, a.y);
}
template<> EIGEN_DEVICE_FUNC inline float predux_min<float4>(const float4& a) {
return fminf(fminf(a.x, a.y), fminf(a.z, a.w));
}
template<> EIGEN_DEVICE_FUNC inline double predux_min<double2>(const double2& a) {
return fmin(a.x, a.y);
}
template<> EIGEN_DEVICE_FUNC inline float predux_mul<float4>(const float4& a) {
return a.x * a.y * a.z * a.w;
}
template<> EIGEN_DEVICE_FUNC inline double predux_mul<double2>(const double2& a) {
return a.x * a.y;
}
template<> EIGEN_DEVICE_FUNC inline float4 pabs<float4>(const float4& a) {
return make_float4(fabsf(a.x), fabsf(a.y), fabsf(a.z), fabsf(a.w));
}
template<> EIGEN_DEVICE_FUNC inline double2 pabs<double2>(const double2& a) {
return make_double2(fabs(a.x), fabs(a.y));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<float4,4>& kernel) {
float tmp = kernel.packet[0].y;
kernel.packet[0].y = kernel.packet[1].x;
kernel.packet[1].x = tmp;
tmp = kernel.packet[0].z;
kernel.packet[0].z = kernel.packet[2].x;
kernel.packet[2].x = tmp;
tmp = kernel.packet[0].w;
kernel.packet[0].w = kernel.packet[3].x;
kernel.packet[3].x = tmp;
tmp = kernel.packet[1].z;
kernel.packet[1].z = kernel.packet[2].y;
kernel.packet[2].y = tmp;
tmp = kernel.packet[1].w;
kernel.packet[1].w = kernel.packet[3].y;
kernel.packet[3].y = tmp;
tmp = kernel.packet[2].w;
kernel.packet[2].w = kernel.packet[3].z;
kernel.packet[3].z = tmp;
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<double2,2>& kernel) {
double tmp = kernel.packet[0].y;
kernel.packet[0].y = kernel.packet[1].x;
kernel.packet[1].x = tmp;
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_CUDA_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_HALF_CUDA_H
#define EIGEN_PACKET_MATH_HALF_CUDA_H
namespace Eigen {
namespace internal {
// Most of the following operations require arch >= 3.0
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDACC__) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
template<> struct is_arithmetic<half2> { enum { value = true }; };
template<> struct packet_traits<Eigen::half> : default_packet_traits
{
typedef half2 type;
typedef half2 half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasAdd = 1,
HasMul = 1,
HasDiv = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasExp = 1,
HasLog = 1,
HasLog1p = 1
};
};
template<> struct unpacket_traits<half2> { typedef Eigen::half type; enum {size=2, alignment=Aligned16}; typedef half2 half; };
template<> __device__ EIGEN_STRONG_INLINE half2 pset1<half2>(const Eigen::half& from) {
return __half2half2(from);
}
template<> __device__ EIGEN_STRONG_INLINE half2 pload<half2>(const Eigen::half* from) {
return *reinterpret_cast<const half2*>(from);
}
template<> __device__ EIGEN_STRONG_INLINE half2 ploadu<half2>(const Eigen::half* from) {
return __halves2half2(from[0], from[1]);
}
template<> EIGEN_STRONG_INLINE half2 ploaddup<half2>(const Eigen::half* from) {
return __halves2half2(from[0], from[0]);
}
template<> __device__ EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const half2& from) {
*reinterpret_cast<half2*>(to) = from;
}
template<> __device__ EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const half2& from) {
to[0] = __low2half(from);
to[1] = __high2half(from);
}
template<>
__device__ EIGEN_ALWAYS_INLINE half2 ploadt_ro<half2, Aligned>(const Eigen::half* from) {
#if __CUDA_ARCH__ >= 350
return __ldg((const half2*)from);
#else
return __halves2half2(*(from+0), *(from+1));
#endif
}
template<>
__device__ EIGEN_ALWAYS_INLINE half2 ploadt_ro<half2, Unaligned>(const Eigen::half* from) {
#if __CUDA_ARCH__ >= 350
return __halves2half2(__ldg(from+0), __ldg(from+1));
#else
return __halves2half2(*(from+0), *(from+1));
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 pgather<Eigen::half, half2>(const Eigen::half* from, Index stride) {
return __halves2half2(from[0*stride], from[1*stride]);
}
template<> __device__ EIGEN_STRONG_INLINE void pscatter<Eigen::half, half2>(Eigen::half* to, const half2& from, Index stride) {
to[stride*0] = __low2half(from);
to[stride*1] = __high2half(from);
}
template<> __device__ EIGEN_STRONG_INLINE Eigen::half pfirst<half2>(const half2& a) {
return __low2half(a);
}
template<> __device__ EIGEN_STRONG_INLINE half2 pabs<half2>(const half2& a) {
half2 result;
result.x = a.x & 0x7FFF7FFF;
return result;
}
__device__ EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<half2,2>& kernel) {
__half a1 = __low2half(kernel.packet[0]);
__half a2 = __high2half(kernel.packet[0]);
__half b1 = __low2half(kernel.packet[1]);
__half b2 = __high2half(kernel.packet[1]);
kernel.packet[0] = __halves2half2(a1, b1);
kernel.packet[1] = __halves2half2(a2, b2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 plset<half2>(const Eigen::half& a) {
#if __CUDA_ARCH__ >= 530
return __halves2half2(a, __hadd(a, __float2half(1.0f)));
#else
float f = __half2float(a) + 1.0f;
return __halves2half2(a, __float2half(f));
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 padd<half2>(const half2& a, const half2& b) {
#if __CUDA_ARCH__ >= 530
return __hadd2(a, b);
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float r1 = a1 + b1;
float r2 = a2 + b2;
return __floats2half2_rn(r1, r2);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 psub<half2>(const half2& a, const half2& b) {
#if __CUDA_ARCH__ >= 530
return __hsub2(a, b);
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float r1 = a1 - b1;
float r2 = a2 - b2;
return __floats2half2_rn(r1, r2);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 pnegate(const half2& a) {
#if __CUDA_ARCH__ >= 530
return __hneg2(a);
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
return __floats2half2_rn(-a1, -a2);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 pconj(const half2& a) { return a; }
template<> __device__ EIGEN_STRONG_INLINE half2 pmul<half2>(const half2& a, const half2& b) {
#if __CUDA_ARCH__ >= 530
return __hmul2(a, b);
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float r1 = a1 * b1;
float r2 = a2 * b2;
return __floats2half2_rn(r1, r2);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 pmadd<half2>(const half2& a, const half2& b, const half2& c) {
#if __CUDA_ARCH__ >= 530
return __hfma2(a, b, c);
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float c1 = __low2float(c);
float c2 = __high2float(c);
float r1 = a1 * b1 + c1;
float r2 = a2 * b2 + c2;
return __floats2half2_rn(r1, r2);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 pdiv<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
float r1 = a1 / b1;
float r2 = a2 / b2;
return __floats2half2_rn(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 pmin<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
__half r1 = a1 < b1 ? __low2half(a) : __low2half(b);
__half r2 = a2 < b2 ? __high2half(a) : __high2half(b);
return __halves2half2(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 pmax<half2>(const half2& a, const half2& b) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float b1 = __low2float(b);
float b2 = __high2float(b);
__half r1 = a1 > b1 ? __low2half(a) : __low2half(b);
__half r2 = a2 > b2 ? __high2half(a) : __high2half(b);
return __halves2half2(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux<half2>(const half2& a) {
#if __CUDA_ARCH__ >= 530
return __hadd(__low2half(a), __high2half(a));
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
return Eigen::half(half_impl::raw_uint16_to_half(__float2half_rn(a1 + a2)));
#endif
}
template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_max<half2>(const half2& a) {
#if __CUDA_ARCH__ >= 530
__half first = __low2half(a);
__half second = __high2half(a);
return __hgt(first, second) ? first : second;
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
return a1 > a2 ? __low2half(a) : __high2half(a);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_min<half2>(const half2& a) {
#if __CUDA_ARCH__ >= 530
__half first = __low2half(a);
__half second = __high2half(a);
return __hlt(first, second) ? first : second;
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
return a1 < a2 ? __low2half(a) : __high2half(a);
#endif
}
template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_mul<half2>(const half2& a) {
#if __CUDA_ARCH__ >= 530
return __hmul(__low2half(a), __high2half(a));
#else
float a1 = __low2float(a);
float a2 = __high2float(a);
return Eigen::half(half_impl::raw_uint16_to_half(__float2half_rn(a1 * a2)));
#endif
}
template<> __device__ EIGEN_STRONG_INLINE half2 plog1p<half2>(const half2& a) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float r1 = log1pf(a1);
float r2 = log1pf(a2);
return __floats2half2_rn(r1, r2);
}
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 80000 && defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 530
template<> __device__ EIGEN_STRONG_INLINE
half2 plog<half2>(const half2& a) {
return h2log(a);
}
template<> __device__ EIGEN_STRONG_INLINE
half2 pexp<half2>(const half2& a) {
return h2exp(a);
}
template<> __device__ EIGEN_STRONG_INLINE
half2 psqrt<half2>(const half2& a) {
return h2sqrt(a);
}
template<> __device__ EIGEN_STRONG_INLINE
half2 prsqrt<half2>(const half2& a) {
return h2rsqrt(a);
}
#else
template<> __device__ EIGEN_STRONG_INLINE half2 plog<half2>(const half2& a) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float r1 = logf(a1);
float r2 = logf(a2);
return __floats2half2_rn(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 pexp<half2>(const half2& a) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float r1 = expf(a1);
float r2 = expf(a2);
return __floats2half2_rn(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 psqrt<half2>(const half2& a) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float r1 = sqrtf(a1);
float r2 = sqrtf(a2);
return __floats2half2_rn(r1, r2);
}
template<> __device__ EIGEN_STRONG_INLINE half2 prsqrt<half2>(const half2& a) {
float a1 = __low2float(a);
float a2 = __high2float(a);
float r1 = rsqrtf(a1);
float r2 = rsqrtf(a2);
return __floats2half2_rn(r1, r2);
}
#endif
#elif defined EIGEN_VECTORIZE_AVX512
typedef struct {
__m256i x;
} Packet16h;
template<> struct is_arithmetic<Packet16h> { enum { value = true }; };
template <>
struct packet_traits<half> : default_packet_traits {
typedef Packet16h type;
// There is no half-size packet for Packet16h.
typedef Packet16h half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 16,
HasHalfPacket = 0,
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasBlend = 0
};
};
template<> struct unpacket_traits<Packet16h> { typedef Eigen::half type; enum {size=16, alignment=Aligned32}; typedef Packet16h half; };
template<> EIGEN_STRONG_INLINE Packet16h pset1<Packet16h>(const Eigen::half& from) {
Packet16h result;
result.x = _mm256_set1_epi16(from.x);
return result;
}
template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet16h>(const Packet16h& from) {
return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm256_extract_epi16(from.x, 0)));
}
template<> EIGEN_STRONG_INLINE Packet16h pload<Packet16h>(const Eigen::half* from) {
Packet16h result;
result.x = _mm256_load_si256(reinterpret_cast<const __m256i*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE Packet16h ploadu<Packet16h>(const Eigen::half* from) {
Packet16h result;
result.x = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE void pstore<half>(Eigen::half* to, const Packet16h& from) {
_mm256_store_si256((__m256i*)to, from.x);
}
template<> EIGEN_STRONG_INLINE void pstoreu<half>(Eigen::half* to, const Packet16h& from) {
_mm256_storeu_si256((__m256i*)to, from.x);
}
template<> EIGEN_STRONG_INLINE Packet16h
ploadquad(const Eigen::half* from) {
Packet16h result;
unsigned short a = from[0].x;
unsigned short b = from[1].x;
unsigned short c = from[2].x;
unsigned short d = from[3].x;
result.x = _mm256_set_epi16(d, d, d, d, c, c, c, c, b, b, b, b, a, a, a, a);
return result;
}
EIGEN_STRONG_INLINE Packet16f half2float(const Packet16h& a) {
#ifdef EIGEN_HAS_FP16_C
return _mm512_cvtph_ps(a.x);
#else
EIGEN_ALIGN64 half aux[16];
pstore(aux, a);
float f0(aux[0]);
float f1(aux[1]);
float f2(aux[2]);
float f3(aux[3]);
float f4(aux[4]);
float f5(aux[5]);
float f6(aux[6]);
float f7(aux[7]);
float f8(aux[8]);
float f9(aux[9]);
float fa(aux[10]);
float fb(aux[11]);
float fc(aux[12]);
float fd(aux[13]);
float fe(aux[14]);
float ff(aux[15]);
return _mm512_set_ps(
ff, fe, fd, fc, fb, fa, f9, f8, f7, f6, f5, f4, f3, f2, f1, f0);
#endif
}
EIGEN_STRONG_INLINE Packet16h float2half(const Packet16f& a) {
#ifdef EIGEN_HAS_FP16_C
Packet16h result;
result.x = _mm512_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
return result;
#else
EIGEN_ALIGN64 float aux[16];
pstore(aux, a);
half h0(aux[0]);
half h1(aux[1]);
half h2(aux[2]);
half h3(aux[3]);
half h4(aux[4]);
half h5(aux[5]);
half h6(aux[6]);
half h7(aux[7]);
half h8(aux[8]);
half h9(aux[9]);
half ha(aux[10]);
half hb(aux[11]);
half hc(aux[12]);
half hd(aux[13]);
half he(aux[14]);
half hf(aux[15]);
Packet16h result;
result.x = _mm256_set_epi16(
hf.x, he.x, hd.x, hc.x, hb.x, ha.x, h9.x, h8.x,
h7.x, h6.x, h5.x, h4.x, h3.x, h2.x, h1.x, h0.x);
return result;
#endif
}
template<> EIGEN_STRONG_INLINE Packet16h padd<Packet16h>(const Packet16h& a, const Packet16h& b) {
Packet16f af = half2float(a);
Packet16f bf = half2float(b);
Packet16f rf = padd(af, bf);
return float2half(rf);
}
template<> EIGEN_STRONG_INLINE Packet16h pmul<Packet16h>(const Packet16h& a, const Packet16h& b) {
Packet16f af = half2float(a);
Packet16f bf = half2float(b);
Packet16f rf = pmul(af, bf);
return float2half(rf);
}
template<> EIGEN_STRONG_INLINE half predux<Packet16h>(const Packet16h& from) {
Packet16f from_float = half2float(from);
return half(predux(from_float));
}
template<> EIGEN_STRONG_INLINE Packet16h pgather<Eigen::half, Packet16h>(const Eigen::half* from, Index stride)
{
Packet16h result;
result.x = _mm256_set_epi16(
from[15*stride].x, from[14*stride].x, from[13*stride].x, from[12*stride].x,
from[11*stride].x, from[10*stride].x, from[9*stride].x, from[8*stride].x,
from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x,
from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
return result;
}
template<> EIGEN_STRONG_INLINE void pscatter<half, Packet16h>(half* to, const Packet16h& from, Index stride)
{
EIGEN_ALIGN64 half aux[16];
pstore(aux, from);
to[stride*0].x = aux[0].x;
to[stride*1].x = aux[1].x;
to[stride*2].x = aux[2].x;
to[stride*3].x = aux[3].x;
to[stride*4].x = aux[4].x;
to[stride*5].x = aux[5].x;
to[stride*6].x = aux[6].x;
to[stride*7].x = aux[7].x;
to[stride*8].x = aux[8].x;
to[stride*9].x = aux[9].x;
to[stride*10].x = aux[10].x;
to[stride*11].x = aux[11].x;
to[stride*12].x = aux[12].x;
to[stride*13].x = aux[13].x;
to[stride*14].x = aux[14].x;
to[stride*15].x = aux[15].x;
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet16h,16>& kernel) {
__m256i a = kernel.packet[0].x;
__m256i b = kernel.packet[1].x;
__m256i c = kernel.packet[2].x;
__m256i d = kernel.packet[3].x;
__m256i e = kernel.packet[4].x;
__m256i f = kernel.packet[5].x;
__m256i g = kernel.packet[6].x;
__m256i h = kernel.packet[7].x;
__m256i i = kernel.packet[8].x;
__m256i j = kernel.packet[9].x;
__m256i k = kernel.packet[10].x;
__m256i l = kernel.packet[11].x;
__m256i m = kernel.packet[12].x;
__m256i n = kernel.packet[13].x;
__m256i o = kernel.packet[14].x;
__m256i p = kernel.packet[15].x;
__m256i ab_07 = _mm256_unpacklo_epi16(a, b);
__m256i cd_07 = _mm256_unpacklo_epi16(c, d);
__m256i ef_07 = _mm256_unpacklo_epi16(e, f);
__m256i gh_07 = _mm256_unpacklo_epi16(g, h);
__m256i ij_07 = _mm256_unpacklo_epi16(i, j);
__m256i kl_07 = _mm256_unpacklo_epi16(k, l);
__m256i mn_07 = _mm256_unpacklo_epi16(m, n);
__m256i op_07 = _mm256_unpacklo_epi16(o, p);
__m256i ab_8f = _mm256_unpackhi_epi16(a, b);
__m256i cd_8f = _mm256_unpackhi_epi16(c, d);
__m256i ef_8f = _mm256_unpackhi_epi16(e, f);
__m256i gh_8f = _mm256_unpackhi_epi16(g, h);
__m256i ij_8f = _mm256_unpackhi_epi16(i, j);
__m256i kl_8f = _mm256_unpackhi_epi16(k, l);
__m256i mn_8f = _mm256_unpackhi_epi16(m, n);
__m256i op_8f = _mm256_unpackhi_epi16(o, p);
__m256i abcd_03 = _mm256_unpacklo_epi32(ab_07, cd_07);
__m256i abcd_47 = _mm256_unpackhi_epi32(ab_07, cd_07);
__m256i efgh_03 = _mm256_unpacklo_epi32(ef_07, gh_07);
__m256i efgh_47 = _mm256_unpackhi_epi32(ef_07, gh_07);
__m256i ijkl_03 = _mm256_unpacklo_epi32(ij_07, kl_07);
__m256i ijkl_47 = _mm256_unpackhi_epi32(ij_07, kl_07);
__m256i mnop_03 = _mm256_unpacklo_epi32(mn_07, op_07);
__m256i mnop_47 = _mm256_unpackhi_epi32(mn_07, op_07);
__m256i abcd_8b = _mm256_unpacklo_epi32(ab_8f, cd_8f);
__m256i abcd_cf = _mm256_unpackhi_epi32(ab_8f, cd_8f);
__m256i efgh_8b = _mm256_unpacklo_epi32(ef_8f, gh_8f);
__m256i efgh_cf = _mm256_unpackhi_epi32(ef_8f, gh_8f);
__m256i ijkl_8b = _mm256_unpacklo_epi32(ij_8f, kl_8f);
__m256i ijkl_cf = _mm256_unpackhi_epi32(ij_8f, kl_8f);
__m256i mnop_8b = _mm256_unpacklo_epi32(mn_8f, op_8f);
__m256i mnop_cf = _mm256_unpackhi_epi32(mn_8f, op_8f);
__m256i abcdefgh_01 = _mm256_unpacklo_epi64(abcd_03, efgh_03);
__m256i abcdefgh_23 = _mm256_unpackhi_epi64(abcd_03, efgh_03);
__m256i ijklmnop_01 = _mm256_unpacklo_epi64(ijkl_03, mnop_03);
__m256i ijklmnop_23 = _mm256_unpackhi_epi64(ijkl_03, mnop_03);
__m256i abcdefgh_45 = _mm256_unpacklo_epi64(abcd_47, efgh_47);
__m256i abcdefgh_67 = _mm256_unpackhi_epi64(abcd_47, efgh_47);
__m256i ijklmnop_45 = _mm256_unpacklo_epi64(ijkl_47, mnop_47);
__m256i ijklmnop_67 = _mm256_unpackhi_epi64(ijkl_47, mnop_47);
__m256i abcdefgh_89 = _mm256_unpacklo_epi64(abcd_8b, efgh_8b);
__m256i abcdefgh_ab = _mm256_unpackhi_epi64(abcd_8b, efgh_8b);
__m256i ijklmnop_89 = _mm256_unpacklo_epi64(ijkl_8b, mnop_8b);
__m256i ijklmnop_ab = _mm256_unpackhi_epi64(ijkl_8b, mnop_8b);
__m256i abcdefgh_cd = _mm256_unpacklo_epi64(abcd_cf, efgh_cf);
__m256i abcdefgh_ef = _mm256_unpackhi_epi64(abcd_cf, efgh_cf);
__m256i ijklmnop_cd = _mm256_unpacklo_epi64(ijkl_cf, mnop_cf);
__m256i ijklmnop_ef = _mm256_unpackhi_epi64(ijkl_cf, mnop_cf);
// NOTE: no unpacklo/hi instr in this case, so using permute instr.
__m256i a_p_0 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x20);
__m256i a_p_1 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x31);
__m256i a_p_2 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x20);
__m256i a_p_3 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x31);
__m256i a_p_4 = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x20);
__m256i a_p_5 = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x31);
__m256i a_p_6 = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x20);
__m256i a_p_7 = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x31);
__m256i a_p_8 = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x20);
__m256i a_p_9 = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x31);
__m256i a_p_a = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x20);
__m256i a_p_b = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x31);
__m256i a_p_c = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x20);
__m256i a_p_d = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x31);
__m256i a_p_e = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x20);
__m256i a_p_f = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x31);
kernel.packet[0].x = a_p_0;
kernel.packet[1].x = a_p_1;
kernel.packet[2].x = a_p_2;
kernel.packet[3].x = a_p_3;
kernel.packet[4].x = a_p_4;
kernel.packet[5].x = a_p_5;
kernel.packet[6].x = a_p_6;
kernel.packet[7].x = a_p_7;
kernel.packet[8].x = a_p_8;
kernel.packet[9].x = a_p_9;
kernel.packet[10].x = a_p_a;
kernel.packet[11].x = a_p_b;
kernel.packet[12].x = a_p_c;
kernel.packet[13].x = a_p_d;
kernel.packet[14].x = a_p_e;
kernel.packet[15].x = a_p_f;
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet16h,8>& kernel) {
EIGEN_ALIGN64 half in[8][16];
pstore<half>(in[0], kernel.packet[0]);
pstore<half>(in[1], kernel.packet[1]);
pstore<half>(in[2], kernel.packet[2]);
pstore<half>(in[3], kernel.packet[3]);
pstore<half>(in[4], kernel.packet[4]);
pstore<half>(in[5], kernel.packet[5]);
pstore<half>(in[6], kernel.packet[6]);
pstore<half>(in[7], kernel.packet[7]);
EIGEN_ALIGN64 half out[8][16];
for (int i = 0; i < 8; ++i) {
for (int j = 0; j < 8; ++j) {
out[i][j] = in[j][2*i];
}
for (int j = 0; j < 8; ++j) {
out[i][j+8] = in[j][2*i+1];
}
}
kernel.packet[0] = pload<Packet16h>(out[0]);
kernel.packet[1] = pload<Packet16h>(out[1]);
kernel.packet[2] = pload<Packet16h>(out[2]);
kernel.packet[3] = pload<Packet16h>(out[3]);
kernel.packet[4] = pload<Packet16h>(out[4]);
kernel.packet[5] = pload<Packet16h>(out[5]);
kernel.packet[6] = pload<Packet16h>(out[6]);
kernel.packet[7] = pload<Packet16h>(out[7]);
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet16h,4>& kernel) {
EIGEN_ALIGN64 half in[4][16];
pstore<half>(in[0], kernel.packet[0]);
pstore<half>(in[1], kernel.packet[1]);
pstore<half>(in[2], kernel.packet[2]);
pstore<half>(in[3], kernel.packet[3]);
EIGEN_ALIGN64 half out[4][16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
out[i][j] = in[j][4*i];
}
for (int j = 0; j < 4; ++j) {
out[i][j+4] = in[j][4*i+1];
}
for (int j = 0; j < 4; ++j) {
out[i][j+8] = in[j][4*i+2];
}
for (int j = 0; j < 4; ++j) {
out[i][j+12] = in[j][4*i+3];
}
}
kernel.packet[0] = pload<Packet16h>(out[0]);
kernel.packet[1] = pload<Packet16h>(out[1]);
kernel.packet[2] = pload<Packet16h>(out[2]);
kernel.packet[3] = pload<Packet16h>(out[3]);
}
#elif defined EIGEN_VECTORIZE_AVX
typedef struct {
__m128i x;
} Packet8h;
template<> struct is_arithmetic<Packet8h> { enum { value = true }; };
template <>
struct packet_traits<Eigen::half> : default_packet_traits {
typedef Packet8h type;
// There is no half-size packet for Packet8h.
typedef Packet8h half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 8,
HasHalfPacket = 0,
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasBlend = 0
};
};
template<> struct unpacket_traits<Packet8h> { typedef Eigen::half type; enum {size=8, alignment=Aligned16}; typedef Packet8h half; };
template<> EIGEN_STRONG_INLINE Packet8h pset1<Packet8h>(const Eigen::half& from) {
Packet8h result;
result.x = _mm_set1_epi16(from.x);
return result;
}
template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet8h>(const Packet8h& from) {
return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_extract_epi16(from.x, 0)));
}
template<> EIGEN_STRONG_INLINE Packet8h pload<Packet8h>(const Eigen::half* from) {
Packet8h result;
result.x = _mm_load_si128(reinterpret_cast<const __m128i*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE Packet8h ploadu<Packet8h>(const Eigen::half* from) {
Packet8h result;
result.x = _mm_loadu_si128(reinterpret_cast<const __m128i*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet8h& from) {
_mm_store_si128(reinterpret_cast<__m128i*>(to), from.x);
}
template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet8h& from) {
_mm_storeu_si128(reinterpret_cast<__m128i*>(to), from.x);
}
template<> EIGEN_STRONG_INLINE Packet8h
ploadquad<Packet8h>(const Eigen::half* from) {
Packet8h result;
unsigned short a = from[0].x;
unsigned short b = from[1].x;
result.x = _mm_set_epi16(b, b, b, b, a, a, a, a);
return result;
}
EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) {
#ifdef EIGEN_HAS_FP16_C
return _mm256_cvtph_ps(a.x);
#else
EIGEN_ALIGN32 Eigen::half aux[8];
pstore(aux, a);
float f0(aux[0]);
float f1(aux[1]);
float f2(aux[2]);
float f3(aux[3]);
float f4(aux[4]);
float f5(aux[5]);
float f6(aux[6]);
float f7(aux[7]);
return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0);
#endif
}
EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) {
#ifdef EIGEN_HAS_FP16_C
Packet8h result;
result.x = _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC);
return result;
#else
EIGEN_ALIGN32 float aux[8];
pstore(aux, a);
Eigen::half h0(aux[0]);
Eigen::half h1(aux[1]);
Eigen::half h2(aux[2]);
Eigen::half h3(aux[3]);
Eigen::half h4(aux[4]);
Eigen::half h5(aux[5]);
Eigen::half h6(aux[6]);
Eigen::half h7(aux[7]);
Packet8h result;
result.x = _mm_set_epi16(h7.x, h6.x, h5.x, h4.x, h3.x, h2.x, h1.x, h0.x);
return result;
#endif
}
template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet8h padd<Packet8h>(const Packet8h& a, const Packet8h& b) {
Packet8f af = half2float(a);
Packet8f bf = half2float(b);
Packet8f rf = padd(af, bf);
return float2half(rf);
}
template<> EIGEN_STRONG_INLINE Packet8h pmul<Packet8h>(const Packet8h& a, const Packet8h& b) {
Packet8f af = half2float(a);
Packet8f bf = half2float(b);
Packet8f rf = pmul(af, bf);
return float2half(rf);
}
template<> EIGEN_STRONG_INLINE Packet8h pgather<Eigen::half, Packet8h>(const Eigen::half* from, Index stride)
{
Packet8h result;
result.x = _mm_set_epi16(from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x, from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
return result;
}
template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet8h>(Eigen::half* to, const Packet8h& from, Index stride)
{
EIGEN_ALIGN32 Eigen::half aux[8];
pstore(aux, from);
to[stride*0].x = aux[0].x;
to[stride*1].x = aux[1].x;
to[stride*2].x = aux[2].x;
to[stride*3].x = aux[3].x;
to[stride*4].x = aux[4].x;
to[stride*5].x = aux[5].x;
to[stride*6].x = aux[6].x;
to[stride*7].x = aux[7].x;
}
template<> EIGEN_STRONG_INLINE Eigen::half predux<Packet8h>(const Packet8h& a) {
Packet8f af = half2float(a);
float reduced = predux<Packet8f>(af);
return Eigen::half(reduced);
}
template<> EIGEN_STRONG_INLINE Eigen::half predux_max<Packet8h>(const Packet8h& a) {
Packet8f af = half2float(a);
float reduced = predux_max<Packet8f>(af);
return Eigen::half(reduced);
}
template<> EIGEN_STRONG_INLINE Eigen::half predux_min<Packet8h>(const Packet8h& a) {
Packet8f af = half2float(a);
float reduced = predux_min<Packet8f>(af);
return Eigen::half(reduced);
}
template<> EIGEN_STRONG_INLINE Eigen::half predux_mul<Packet8h>(const Packet8h& a) {
Packet8f af = half2float(a);
float reduced = predux_mul<Packet8f>(af);
return Eigen::half(reduced);
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,8>& kernel) {
__m128i a = kernel.packet[0].x;
__m128i b = kernel.packet[1].x;
__m128i c = kernel.packet[2].x;
__m128i d = kernel.packet[3].x;
__m128i e = kernel.packet[4].x;
__m128i f = kernel.packet[5].x;
__m128i g = kernel.packet[6].x;
__m128i h = kernel.packet[7].x;
__m128i a03b03 = _mm_unpacklo_epi16(a, b);
__m128i c03d03 = _mm_unpacklo_epi16(c, d);
__m128i e03f03 = _mm_unpacklo_epi16(e, f);
__m128i g03h03 = _mm_unpacklo_epi16(g, h);
__m128i a47b47 = _mm_unpackhi_epi16(a, b);
__m128i c47d47 = _mm_unpackhi_epi16(c, d);
__m128i e47f47 = _mm_unpackhi_epi16(e, f);
__m128i g47h47 = _mm_unpackhi_epi16(g, h);
__m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03);
__m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03);
__m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03);
__m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03);
__m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47);
__m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47);
__m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47);
__m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47);
__m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01);
__m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01);
__m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23);
__m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23);
__m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45);
__m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45);
__m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67);
__m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67);
kernel.packet[0].x = a0b0c0d0e0f0g0h0;
kernel.packet[1].x = a1b1c1d1e1f1g1h1;
kernel.packet[2].x = a2b2c2d2e2f2g2h2;
kernel.packet[3].x = a3b3c3d3e3f3g3h3;
kernel.packet[4].x = a4b4c4d4e4f4g4h4;
kernel.packet[5].x = a5b5c5d5e5f5g5h5;
kernel.packet[6].x = a6b6c6d6e6f6g6h6;
kernel.packet[7].x = a7b7c7d7e7f7g7h7;
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet8h,4>& kernel) {
EIGEN_ALIGN32 Eigen::half in[4][8];
pstore<Eigen::half>(in[0], kernel.packet[0]);
pstore<Eigen::half>(in[1], kernel.packet[1]);
pstore<Eigen::half>(in[2], kernel.packet[2]);
pstore<Eigen::half>(in[3], kernel.packet[3]);
EIGEN_ALIGN32 Eigen::half out[4][8];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
out[i][j] = in[j][2*i];
}
for (int j = 0; j < 4; ++j) {
out[i][j+4] = in[j][2*i+1];
}
}
kernel.packet[0] = pload<Packet8h>(out[0]);
kernel.packet[1] = pload<Packet8h>(out[1]);
kernel.packet[2] = pload<Packet8h>(out[2]);
kernel.packet[3] = pload<Packet8h>(out[3]);
}
// Disable the following code since it's broken on too many platforms / compilers.
//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC)
#elif 0
typedef struct {
__m64 x;
} Packet4h;
template<> struct is_arithmetic<Packet4h> { enum { value = true }; };
template <>
struct packet_traits<Eigen::half> : default_packet_traits {
typedef Packet4h type;
// There is no half-size packet for Packet4h.
typedef Packet4h half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasBlend = 0
};
};
template<> struct unpacket_traits<Packet4h> { typedef Eigen::half type; enum {size=4, alignment=Aligned16}; typedef Packet4h half; };
template<> EIGEN_STRONG_INLINE Packet4h pset1<Packet4h>(const Eigen::half& from) {
Packet4h result;
result.x = _mm_set1_pi16(from.x);
return result;
}
template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet4h>(const Packet4h& from) {
return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_cvtsi64_si32(from.x)));
}
template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4h padd<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha + hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha + hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h pmul<Packet4h>(const Packet4h& a, const Packet4h& b) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
__int64_t b64 = _mm_cvtm64_si64(b.x);
Eigen::half h[4];
Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64));
Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64));
h[0] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16));
h[1] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32));
h[2] = ha * hb;
ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48));
h[3] = ha * hb;
Packet4h result;
result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x);
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h pload<Packet4h>(const Eigen::half* from) {
Packet4h result;
result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE Packet4h ploadu<Packet4h>(const Eigen::half* from) {
Packet4h result;
result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from));
return result;
}
template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet4h& from) {
__int64_t r = _mm_cvtm64_si64(from.x);
*(reinterpret_cast<__int64_t*>(to)) = r;
}
template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet4h& from) {
__int64_t r = _mm_cvtm64_si64(from.x);
*(reinterpret_cast<__int64_t*>(to)) = r;
}
template<> EIGEN_STRONG_INLINE Packet4h
ploadquad<Packet4h>(const Eigen::half* from) {
return pset1<Packet4h>(*from);
}
template<> EIGEN_STRONG_INLINE Packet4h pgather<Eigen::half, Packet4h>(const Eigen::half* from, Index stride)
{
Packet4h result;
result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x);
return result;
}
template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet4h>(Eigen::half* to, const Packet4h& from, Index stride)
{
__int64_t a = _mm_cvtm64_si64(from.x);
to[stride*0].x = static_cast<unsigned short>(a);
to[stride*1].x = static_cast<unsigned short>(a >> 16);
to[stride*2].x = static_cast<unsigned short>(a >> 32);
to[stride*3].x = static_cast<unsigned short>(a >> 48);
}
EIGEN_STRONG_INLINE void
ptranspose(PacketBlock<Packet4h,4>& kernel) {
__m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x);
__m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x);
__m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x);
__m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x);
kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1);
kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1);
kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3);
kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3);
}
#endif
}
}
#endif // EIGEN_PACKET_MATH_HALF_CUDA_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TYPE_CASTING_CUDA_H
#define EIGEN_TYPE_CASTING_CUDA_H
namespace Eigen {
namespace internal {
template<>
struct scalar_cast_op<float, Eigen::half> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef Eigen::half result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half operator() (const float& a) const {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __float2half(a);
#else
return Eigen::half(a);
#endif
}
};
template<>
struct functor_traits<scalar_cast_op<float, Eigen::half> >
{ enum { Cost = NumTraits<float>::AddCost, PacketAccess = false }; };
template<>
struct scalar_cast_op<int, Eigen::half> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef Eigen::half result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half operator() (const int& a) const {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __float2half(static_cast<float>(a));
#else
return Eigen::half(static_cast<float>(a));
#endif
}
};
template<>
struct functor_traits<scalar_cast_op<int, Eigen::half> >
{ enum { Cost = NumTraits<float>::AddCost, PacketAccess = false }; };
template<>
struct scalar_cast_op<Eigen::half, float> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
typedef float result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator() (const Eigen::half& a) const {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __half2float(a);
#else
return static_cast<float>(a);
#endif
}
};
template<>
struct functor_traits<scalar_cast_op<Eigen::half, float> >
{ enum { Cost = NumTraits<float>::AddCost, PacketAccess = false }; };
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
template <>
struct type_casting_traits<Eigen::half, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 2,
TgtCoeffRatio = 1
};
};
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcast<half2, float4>(const half2& a, const half2& b) {
float2 r1 = __half22float2(a);
float2 r2 = __half22float2(b);
return make_float4(r1.x, r1.y, r2.x, r2.y);
}
template <>
struct type_casting_traits<float, Eigen::half> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 2
};
};
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcast<float4, half2>(const float4& a) {
// Simply discard the second half of the input
return __floats2half2_rn(a.x, a.y);
}
#elif defined EIGEN_VECTORIZE_AVX512
template <>
struct type_casting_traits<half, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet16f pcast<Packet16h, Packet16f>(const Packet16h& a) {
return half2float(a);
}
template <>
struct type_casting_traits<float, half> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet16h pcast<Packet16f, Packet16h>(const Packet16f& a) {
return float2half(a);
}
#elif defined EIGEN_VECTORIZE_AVX
template <>
struct type_casting_traits<Eigen::half, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet8f pcast<Packet8h, Packet8f>(const Packet8h& a) {
return half2float(a);
}
template <>
struct type_casting_traits<float, Eigen::half> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet8h pcast<Packet8f, Packet8h>(const Packet8f& a) {
return float2half(a);
}
// Disable the following code since it's broken on too many platforms / compilers.
//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC)
#elif 0
template <>
struct type_casting_traits<Eigen::half, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet4h, Packet4f>(const Packet4h& a) {
__int64_t a64 = _mm_cvtm64_si64(a.x);
Eigen::half h = raw_uint16_to_half(static_cast<unsigned short>(a64));
float f1 = static_cast<float>(h);
h = raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16));
float f2 = static_cast<float>(h);
h = raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32));
float f3 = static_cast<float>(h);
h = raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48));
float f4 = static_cast<float>(h);
return _mm_set_ps(f4, f3, f2, f1);
}
template <>
struct type_casting_traits<float, Eigen::half> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet4h pcast<Packet4f, Packet4h>(const Packet4f& a) {
EIGEN_ALIGN16 float aux[4];
pstore(aux, a);
Eigen::half h0(aux[0]);
Eigen::half h1(aux[1]);
Eigen::half h2(aux[2]);
Eigen::half h3(aux[3]);
Packet4h result;
result.x = _mm_set_pi16(h3.x, h2.x, h1.x, h0.x);
return result;
}
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TYPE_CASTING_CUDA_H
FILE(GLOB Eigen_Core_arch_Default_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_Default_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/Default COMPONENT Devel
)
FILE(GLOB Eigen_Core_arch_NEON_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_NEON_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/NEON COMPONENT Devel
)
......@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
......@@ -14,8 +15,21 @@ namespace Eigen {
namespace internal {
static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
inline uint32x4_t p4ui_CONJ_XOR() {
// See bug 1325, clang fails to call vld1q_u64.
#if EIGEN_COMP_CLANG
uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
return ret;
#else
static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
return vld1q_u32( conj_XOR_DATA );
#endif
}
inline uint32x2_t p2ui_CONJ_XOR() {
static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 };
return vld1_u32( conj_XOR_DATA );
}
//---------- float ----------
struct Packet2cf
......@@ -28,10 +42,12 @@ struct Packet2cf
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
......@@ -46,7 +62,7 @@ template<> struct packet_traits<std::complex<float> > : default_packet_traits
};
};
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; };
template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
{
......@@ -62,7 +78,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Pa
template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
{
Packet4ui b = vreinterpretq_u32_f32(a.v);
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR())));
}
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
......@@ -71,14 +87,14 @@ template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, con
// Get the real values of a | a1_re | a1_re | a2_re | a2_re |
v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
// Get the real values of a | a1_im | a1_im | a2_im | a2_im |
// Get the imag values of a | a1_im | a1_im | a2_im | a2_im |
v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
// Multiply the real a with b
v1 = vmulq_f32(v1, b.v);
// Multiply the imag a with b
v2 = vmulq_f32(v2, b.v);
// Conjugate v2
v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR()));
// Swap real/imag elements in v2.
v2 = vrev64q_f32(v2);
// Add and return the result
......@@ -87,7 +103,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, con
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
......@@ -110,6 +126,22 @@ template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
{
Packet4f res = pset1<Packet4f>(0.f);
res = vsetq_lane_f32(std::real(from[0*stride]), res, 0);
res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1);
res = vsetq_lane_f32(std::real(from[1*stride]), res, 2);
res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3);
return Packet2cf(res);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
{
to[stride*0] = std::complex<float>(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1));
to[stride*1] = std::complex<float>(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3));
}
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { EIGEN_ARM_PREFETCH((float *)addr); }
template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
......@@ -177,7 +209,7 @@ template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const P
// Multiply the imag a with b
v2 = vmul_f32(v2, a2);
// Conjugate v2
v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR()));
// Swap real/imag elements in v2.
v2 = vrev64_f32(v2);
// Add v1, v2
......@@ -235,7 +267,7 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for AltiVec
// TODO optimize it for NEON
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s, rev_s;
......@@ -246,6 +278,207 @@ template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, con
return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2cf,2>& kernel) {
Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v));
kernel.packet[1].v = tmp;
}
//---------- double ----------
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
// See bug 1325, clang fails to call vld1q_u64.
#if EIGEN_COMP_CLANG
static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000};
#else
const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 };
static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA );
#endif
struct Packet1cd
{
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
Packet2d v;
};
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd<Packet2d>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub<Packet2d>(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate<Packet2d>(a.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); }
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
Packet2d v1, v2;
// Get the real values of a
v1 = vdupq_lane_f64(vget_low_f64(a.v), 0);
// Get the imag values of a
v2 = vdupq_lane_f64(vget_high_f64(a.v), 0);
// Multiply the real a with b
v1 = vmulq_f64(v1, b.v);
// Multiply the imag a with b
v2 = vmulq_f64(v2, b.v);
// Conjugate v2
v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR));
// Swap real/imag elements in v2.
v2 = preverse<Packet2d>(v2);
// Add and return the result
return Packet1cd(vaddq_f64(v1, v2));
}
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((double *)addr); }
template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
{
Packet2d res = pset1<Packet2d>(0.0);
res = vsetq_lane_f64(std::real(from[0*stride]), res, 0);
res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1);
return Packet1cd(res);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
{
to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1));
}
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
{
std::complex<double> EIGEN_ALIGN16 res;
pstore<std::complex<double> >(&res, a);
return res;
}
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
{
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for NEON
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
Packet2d s = pmul<Packet2d>(b.v, b.v);
Packet2d rev_s = preverse<Packet2d>(s);
return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s)));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
{
Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v));
kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v));
kernel.packet[1].v = tmp;
}
#endif // EIGEN_ARCH_ARM64
} // end namespace internal
} // end namespace Eigen
......
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
#ifndef EIGEN_MATH_FUNCTIONS_NEON_H
#define EIGEN_MATH_FUNCTIONS_NEON_H
namespace Eigen {
namespace internal {
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
Packet4f x = _x;
Packet4f tmp, fx;
_EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
_EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
_EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
_EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
_EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
x = vminq_f32(x, p4f_exp_hi);
x = vmaxq_f32(x, p4f_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = vmlaq_f32(p4f_half, x, p4f_cephes_LOG2EF);
/* perform a floorf */
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
/* if greater, substract 1 */
Packet4ui mask = vcgtq_f32(tmp, fx);
mask = vandq_u32(mask, vreinterpretq_u32_f32(p4f_1));
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
tmp = vmulq_f32(fx, p4f_cephes_exp_C1);
Packet4f z = vmulq_f32(fx, p4f_cephes_exp_C2);
x = vsubq_f32(x, tmp);
x = vsubq_f32(x, z);
Packet4f y = vmulq_f32(p4f_cephes_exp_p0, x);
z = vmulq_f32(x, x);
y = vaddq_f32(y, p4f_cephes_exp_p1);
y = vmulq_f32(y, x);
y = vaddq_f32(y, p4f_cephes_exp_p2);
y = vmulq_f32(y, x);
y = vaddq_f32(y, p4f_cephes_exp_p3);
y = vmulq_f32(y, x);
y = vaddq_f32(y, p4f_cephes_exp_p4);
y = vmulq_f32(y, x);
y = vaddq_f32(y, p4f_cephes_exp_p5);
y = vmulq_f32(y, z);
y = vaddq_f32(y, x);
y = vaddq_f32(y, p4f_1);
/* build 2^n */
int32x4_t mm;
mm = vcvtq_s32_f32(fx);
mm = vaddq_s32(mm, p4i_0x7f);
mm = vshlq_n_s32(mm, 23);
Packet4f pow2n = vreinterpretq_f32_s32(mm);
y = vmulq_f32(y, pow2n);
return y;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_NEON_H
......@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
// Heavily based on Gael's SSE version.
//
// This Source Code Form is subject to the terms of the Mozilla
......@@ -20,43 +20,48 @@ namespace internal {
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
#if EIGEN_ARCH_ARM64
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
#else
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif
#endif
typedef float32x2_t Packet2f;
typedef float32x4_t Packet4f;
typedef int32x4_t Packet4i;
typedef int32x2_t Packet2i;
typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int32_t>(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
#if defined(__llvm__) && !defined(__clang__)
//Special treatment for Apple's llvm-gcc, its NEON packet types are unions
#define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}}
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
#else
//Default initializer for packets
#define EIGEN_INIT_NEON_PACKET2(X, Y) {X, Y}
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
#endif
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
#if EIGEN_ARCH_ARM64
// __builtin_prefetch tends to do nothing on ARM64 compilers because the
// prefetch instructions there are too detailed for __builtin_prefetch to map
// meaningfully to them.
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__("prfm pldl1keep, [%[addr]]\n" ::[addr] "r"(ADDR) : );
#elif EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#elif defined __pld
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
#elif !defined(__aarch64__)
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#elif EIGEN_ARCH_ARM32
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ("pld [%[addr]]\n" :: [addr] "r" (ADDR) : );
#else
// by default no explicit prefetching
#define EIGEN_ARM_PREFETCH(ADDR)
......@@ -65,53 +70,60 @@ typedef uint32x4_t Packet4ui;
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
typedef Packet4f half; // Packet2f intrinsics not implemented yet
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket=0, // Packet2f intrinsics not implemented yet
HasDiv = 1,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasExp = 1,
HasSqrt = 0
};
};
template<> struct packet_traits<int> : default_packet_traits
template<> struct packet_traits<int32_t> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half; // Packet2i intrinsics not implemented yet
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
size=4,
HasHalfPacket=0 // Packet2i intrinsics not implemented yet
// FIXME check the Has*
};
};
#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
#if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet4i> { typedef int32_t type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return vdupq_n_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int32_t& from) { return vdupq_n_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
{
Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
const float f[] = {0, 1, 2, 3};
Packet4f countdown = vld1q_f32(f);
return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int32_t& a)
{
Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
const int32_t i[] = {0, 1, 2, 3};
Packet4i countdown = vld1q_s32(i);
return vaddq_s32(pset1<Packet4i>(a), countdown);
}
......@@ -132,6 +144,9 @@ template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
#if EIGEN_ARCH_ARM64
return vdivq_f32(a,b);
#else
Packet4f inv, restep, div;
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
......@@ -150,14 +165,51 @@ template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const
div = vmulq_f32(a, inv);
return div;
#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
return pset1<Packet4i>(0);
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
// Clang/ARM wrongly advertises __ARM_FEATURE_FMA even when it's not available,
// then implements a slow software scalar fallback calling fmaf()!
// Filed LLVM bug:
// https://llvm.org/bugs/show_bug.cgi?id=27216
#if (defined __ARM_FEATURE_FMA) && !(EIGEN_COMP_CLANG && EIGEN_ARCH_ARM)
// See bug 936.
// FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4.
// FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding.
// MLA is not fused i.e. does 2 roundings.
// In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4):
// MLA: 10 GFlop/s ; FMA: 12 GFlops/s.
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) {
#if EIGEN_COMP_CLANG && EIGEN_ARCH_ARM
// Clang/ARM will replace VMLA by VMUL+VADD at least for some values of -mcpu,
// at least -mcpu=cortex-a8 and -mcpu=cortex-a7. Since the former is the default on
// -march=armv7-a, that is a very common case.
// See e.g. this thread:
// http://lists.llvm.org/pipermail/llvm-dev/2013-December/068806.html
// Filed LLVM bug:
// https://llvm.org/bugs/show_bug.cgi?id=27219
Packet4f r = c;
asm volatile(
"vmla.f32 %q[r], %q[a], %q[b]"
: [r] "+w" (r)
: [a] "w" (a),
[b] "w" (b)
: );
return r;
#else
return vmlaq_f32(c,a,b);
#endif
}
#endif
// No FMA instruction for int, so use MLA unconditionally.
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
......@@ -191,20 +243,20 @@ template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, con
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int32_t* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int32_t* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
float32x2_t lo, hi;
lo = vld1_dup_f32(from);
hi = vld1_dup_f32(from+1);
return vcombine_f32(lo, hi);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int32_t* from)
{
int32x2_t lo, hi;
lo = vld1_dup_s32(from);
......@@ -212,18 +264,52 @@ template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
return vcombine_s32(lo, hi);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<float> (float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int32_t>(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float> (float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int32_t>(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
Packet4f res = pset1<Packet4f>(0.f);
res = vsetq_lane_f32(from[0*stride], res, 0);
res = vsetq_lane_f32(from[1*stride], res, 1);
res = vsetq_lane_f32(from[2*stride], res, 2);
res = vsetq_lane_f32(from[3*stride], res, 3);
return res;
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int32_t, Packet4i>(const int32_t* from, Index stride)
{
Packet4i res = pset1<Packet4i>(0);
res = vsetq_lane_s32(from[0*stride], res, 0);
res = vsetq_lane_s32(from[1*stride], res, 1);
res = vsetq_lane_s32(from[2*stride], res, 2);
res = vsetq_lane_s32(from[3*stride], res, 3);
return res;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
to[stride*0] = vgetq_lane_f32(from, 0);
to[stride*1] = vgetq_lane_f32(from, 1);
to[stride*2] = vgetq_lane_f32(from, 2);
to[stride*3] = vgetq_lane_f32(from, 3);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int32_t, Packet4i>(int32_t* to, const Packet4i& from, Index stride)
{
to[stride*0] = vgetq_lane_s32(from, 0);
to[stride*1] = vgetq_lane_s32(from, 1);
to[stride*2] = vgetq_lane_s32(from, 2);
to[stride*3] = vgetq_lane_s32(from, 3);
}
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ARM_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ARM_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<float> (const float* addr) { EIGEN_ARM_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int32_t>(const int32_t* addr) { EIGEN_ARM_PREFETCH(addr); }
// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int32_t pfirst<Packet4i>(const Packet4i& a) { int32_t EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
float32x2_t a_lo, a_hi;
......@@ -243,6 +329,7 @@ template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
a_hi = vget_high_s32(a_r64);
return vcombine_s32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
......@@ -277,7 +364,7 @@ template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
return sum;
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
template<> EIGEN_STRONG_INLINE int32_t predux<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, sum;
......@@ -324,7 +411,7 @@ template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
return vget_lane_f32(prod, 0);
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
template<> EIGEN_STRONG_INLINE int32_t predux_mul<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, prod;
......@@ -352,7 +439,7 @@ template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
return vget_lane_f32(min, 0);
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
template<> EIGEN_STRONG_INLINE int32_t predux_min<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, min;
......@@ -377,7 +464,7 @@ template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
return vget_lane_f32(max, 0);
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
template<> EIGEN_STRONG_INLINE int32_t predux_max<Packet4i>(const Packet4i& a)
{
int32x2_t a_lo, a_hi, max;
......@@ -410,9 +497,231 @@ PALIGN_NEON(0,Packet4i,vextq_s32)
PALIGN_NEON(1,Packet4i,vextq_s32)
PALIGN_NEON(2,Packet4i,vextq_s32)
PALIGN_NEON(3,Packet4i,vextq_s32)
#undef PALIGN_NEON
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
float32x4x2_t tmp1 = vzipq_f32(kernel.packet[0], kernel.packet[1]);
float32x4x2_t tmp2 = vzipq_f32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = vcombine_f32(vget_low_f32(tmp1.val[0]), vget_low_f32(tmp2.val[0]));
kernel.packet[1] = vcombine_f32(vget_high_f32(tmp1.val[0]), vget_high_f32(tmp2.val[0]));
kernel.packet[2] = vcombine_f32(vget_low_f32(tmp1.val[1]), vget_low_f32(tmp2.val[1]));
kernel.packet[3] = vcombine_f32(vget_high_f32(tmp1.val[1]), vget_high_f32(tmp2.val[1]));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
int32x4x2_t tmp1 = vzipq_s32(kernel.packet[0], kernel.packet[1]);
int32x4x2_t tmp2 = vzipq_s32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = vcombine_s32(vget_low_s32(tmp1.val[0]), vget_low_s32(tmp2.val[0]));
kernel.packet[1] = vcombine_s32(vget_high_s32(tmp1.val[0]), vget_high_s32(tmp2.val[0]));
kernel.packet[2] = vcombine_s32(vget_low_s32(tmp1.val[1]), vget_low_s32(tmp2.val[1]));
kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1]));
}
//---------- double ----------
// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double.
// Confirmed at least with __apple_build_version__ = 6000054.
#ifdef __apple_build_version__
// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed.
// https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with
// major toolchain updates.
#define EIGEN_APPLE_DOUBLE_NEON_BUG (__apple_build_version__ < 6010000)
#else
#define EIGEN_APPLE_DOUBLE_NEON_BUG 0
#endif
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
// Bug 907: workaround missing declarations of the following two functions in the ADK
// Defining these functions as templates ensures that if these intrinsics are
// already defined in arm_neon.h, then our workaround doesn't cause a conflict
// and has lower priority in overload resolution.
template <typename T>
uint64x2_t vreinterpretq_u64_f64(T a)
{
return (uint64x2_t) a;
}
template <typename T>
float64x2_t vreinterpretq_f64_u64(T a)
{
return (float64x2_t) a;
}
typedef float64x2_t Packet2d;
typedef float64x1_t Packet1d;
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket=0,
HasDiv = 1,
// FIXME check the Has*
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 0,
HasSqrt = 0
};
};
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return vdupq_n_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a)
{
const double countdown_raw[] = {0.0,1.0};
const Packet2d countdown = vld1q_f64(countdown_raw);
return vaddq_f64(pset1<Packet2d>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); }
#ifdef __ARM_FEATURE_FMA
// See bug 936. See above comment about FMA for float.
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); }
#else
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); }
#endif
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); }
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b)
{
return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
}
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
return vld1q_dup_f64(from);
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); }
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
Packet2d res = pset1<Packet2d>(0.0);
res = vsetq_lane_f64(from[0*stride], res, 0);
res = vsetq_lane_f64(from[1*stride], res, 1);
return res;
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
to[stride*0] = vgetq_lane_f64(from, 0);
to[stride*1] = vgetq_lane_f64(from, 1);
}
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ARM_PREFETCH(addr); }
// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(a, 0); }
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); }
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); }
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
// workaround ICE, see bug 907
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; }
#else
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); }
#endif
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
float64x2_t trn1, trn2;
// NEON zip performs interleaving of the supplied vectors.
// We perform two interleaves in a row to acquire the transposed vector
trn1 = vzip1q_f64(vecs[0], vecs[1]);
trn2 = vzip2q_f64(vecs[0], vecs[1]);
// Do the addition of the resulting vectors
return vaddq_f64(trn1, trn2);
}
// Other reduction functions:
// mul
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; }
#else
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); }
#endif
// min
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); }
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); }
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
#define PALIGN_NEON(Offset,Type,Command) \
template<>\
struct palign_impl<Offset,Type>\
{\
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
{\
if (Offset!=0)\
first = Command(first, second, Offset);\
}\
};\
PALIGN_NEON(0,Packet2d,vextq_f64)
PALIGN_NEON(1,Packet2d,vextq_f64)
#undef PALIGN_NEON
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]);
float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]);
kernel.packet[0] = trn1;
kernel.packet[1] = trn2;
}
#endif // EIGEN_ARCH_ARM64
} // end namespace internal
} // end namespace Eigen
......
FILE(GLOB Eigen_Core_arch_SSE_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_SSE_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/SSE COMPONENT Devel
)
......@@ -22,13 +22,18 @@ struct Packet2cf
__m128 v;
};
// Use the packet_traits defined in AVX/PacketMath.h instead if we're going
// to leverage AVX instructions.
#ifndef EIGEN_VECTORIZE_AVX
template<> struct packet_traits<std::complex<float> > : default_packet_traits
{
typedef Packet2cf type;
typedef Packet2cf half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
......@@ -39,11 +44,13 @@ template<> struct packet_traits<std::complex<float> > : default_packet_traits
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
HasSetLinear = 0,
HasBlend = 1
};
};
#endif
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; };
template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); }
......@@ -60,7 +67,6 @@ template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
// TODO optimize it for SSE3 and 4
#ifdef EIGEN_VECTORIZE_SSE3
return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v),
_mm_mul_ps(_mm_movehdup_ps(a.v),
......@@ -104,8 +110,23 @@ template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<flo
template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), Packet4f(from.v)); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), Packet4f(from.v)); }
template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather<std::complex<float>, Packet2cf>(const std::complex<float>* from, Index stride)
{
return Packet2cf(_mm_set_ps(std::imag(from[1*stride]), std::real(from[1*stride]),
std::imag(from[0*stride]), std::real(from[0*stride])));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet2cf>(std::complex<float>* to, const Packet2cf& from, Index stride)
{
to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 0)),
_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 1)));
to[stride*1] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 2)),
_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 3)));
}
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
......@@ -124,7 +145,7 @@ template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Pack
#endif
}
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(_mm_castps_pd(a.v)))); }
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(Packet2d(_mm_castps_pd(a.v))))); }
template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
{
......@@ -214,7 +235,7 @@ template<> struct conj_helper<Packet4f, Packet2cf, false,false>
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
{ return Packet2cf(Eigen::internal::pmul(x, y.v)); }
{ return Packet2cf(Eigen::internal::pmul<Packet4f>(x, y.v)); }
};
template<> struct conj_helper<Packet2cf, Packet4f, false,false>
......@@ -223,7 +244,7 @@ template<> struct conj_helper<Packet2cf, Packet4f, false,false>
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
{ return Packet2cf(Eigen::internal::pmul(x.v, y)); }
{ return Packet2cf(Eigen::internal::pmul<Packet4f>(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
......@@ -234,7 +255,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, con
return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1)))));
}
EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
EIGEN_STRONG_INLINE Packet2cf pcplxflip/* <Packet2cf> */(const Packet2cf& x)
{
return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2));
}
......@@ -248,13 +269,18 @@ struct Packet1cd
__m128d v;
};
// Use the packet_traits defined in AVX/PacketMath.h instead if we're going
// to leverage AVX instructions.
#ifndef EIGEN_VECTORIZE_AVX
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
......@@ -268,12 +294,13 @@ template<> struct packet_traits<std::complex<double> > : default_packet_traits
HasSetLinear = 0
};
};
#endif
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; };
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
{
const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
......@@ -282,9 +309,8 @@ template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for SSE3 and 4
#ifdef EIGEN_VECTORIZE_SSE3
return Packet1cd(_mm_addsub_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
return Packet1cd(_mm_addsub_pd(_mm_mul_pd(_mm_movedup_pd(a.v), b.v),
_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
vec2d_swizzle1(b.v, 1, 0))));
#else
......@@ -311,8 +337,8 @@ template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<dou
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
// FIXME force unaligned store, this is a temporary fix
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, Packet2d(from.v)); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, Packet2d(from.v)); }
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
......@@ -410,7 +436,7 @@ template<> struct conj_helper<Packet2d, Packet1cd, false,false>
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
{ return Packet1cd(Eigen::internal::pmul(x, y.v)); }
{ return Packet1cd(Eigen::internal::pmul<Packet2d>(x, y.v)); }
};
template<> struct conj_helper<Packet1cd, Packet2d, false,false>
......@@ -419,7 +445,7 @@ template<> struct conj_helper<Packet1cd, Packet2d, false,false>
{ return padd(c, pmul(x,y)); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
{ return Packet1cd(Eigen::internal::pmul(x.v, y)); }
{ return Packet1cd(Eigen::internal::pmul<Packet2d>(x.v, y)); }
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
......@@ -430,9 +456,44 @@ template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, con
return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1))));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
EIGEN_STRONG_INLINE Packet1cd pcplxflip/* <Packet1cd> */(const Packet1cd& x)
{
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2cf,2>& kernel) {
__m128d w1 = _mm_castps_pd(kernel.packet[0].v);
__m128d w2 = _mm_castps_pd(kernel.packet[1].v);
__m128 tmp = _mm_castpd_ps(_mm_unpackhi_pd(w1, w2));
kernel.packet[0].v = _mm_castpd_ps(_mm_unpacklo_pd(w1, w2));
kernel.packet[1].v = tmp;
}
template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) {
__m128d result = pblend<Packet2d>(ifPacket, _mm_castps_pd(thenPacket.v), _mm_castps_pd(elsePacket.v));
return Packet2cf(_mm_castpd_ps(result));
}
template<> EIGEN_STRONG_INLINE Packet2cf pinsertfirst(const Packet2cf& a, std::complex<float> b)
{
return Packet2cf(_mm_loadl_pi(a.v, reinterpret_cast<const __m64*>(&b)));
}
template<> EIGEN_STRONG_INLINE Packet1cd pinsertfirst(const Packet1cd&, std::complex<double> b)
{
return pset1<Packet1cd>(b);
}
template<> EIGEN_STRONG_INLINE Packet2cf pinsertlast(const Packet2cf& a, std::complex<float> b)
{
return Packet2cf(_mm_loadh_pi(a.v, reinterpret_cast<const __m64*>(&b)));
}
template<> EIGEN_STRONG_INLINE Packet1cd pinsertlast(const Packet1cd&, std::complex<double> b)
{
return Packet1cd(preverse(x.v));
return pset1<Packet1cd>(b);
}
} // end namespace internal
......
......@@ -32,7 +32,7 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
/* the smallest non denormalized float number */
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f);
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
......@@ -63,7 +63,7 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
x = _mm_or_ps(x, p4f_half);
emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
Packet4f e = padd(Packet4f(_mm_cvtepi32_ps(emm0)), p4f_1);
/* part2:
if( x < SQRTHF ) {
......@@ -72,9 +72,9 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
} else { x = x - 1.0; }
*/
Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
Packet4f tmp = _mm_and_ps(x, mask);
Packet4f tmp = pand(x, mask);
x = psub(x, p4f_1);
e = psub(e, _mm_and_ps(p4f_1, mask));
e = psub(e, pand(p4f_1, mask));
x = padd(x, tmp);
Packet4f x2 = pmul(x,x);
......@@ -444,32 +444,119 @@ Packet4f pcos<Packet4f>(const Packet4f& _x)
#if EIGEN_FAST_MATH
// This is based on Quake3's fast inverse square root.
// Functions for sqrt.
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
// exact solution. It does not handle +inf, or denormalized numbers correctly.
// The main advantage of this approach is not just speed, but also the fact that
// it can be inlined and pipelined with other computations, further reducing its
// effective latency. This is similar to Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& _x)
{
Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
Packet4f denormal_mask = _mm_and_ps(
_mm_cmpge_ps(_x, _mm_setzero_ps()),
_mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)())));
/* select only the inverse sqrt of non-zero inputs */
Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
// Compute approximate reciprocal sqrt.
Packet4f x = _mm_rsqrt_ps(_x);
// Do a single step of Newton's iteration.
x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
return pmul(_x,x);
// Flush results for denormals to zero.
return _mm_andnot_ps(denormal_mask, pmul(_x,x));
}
#else
template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
#endif
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
#if EIGEN_FAST_MATH
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f prsqrt<Packet4f>(const Packet4f& _x) {
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000);
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000);
_EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f);
_EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f);
_EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000);
Packet4f neg_half = pmul(_x, p4f_minus_half);
// select only the inverse sqrt of positive normal inputs (denormals are
// flushed to zero and cause infs as well).
Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min);
Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x));
// Fill in NaNs and Infs for the negative/zero entries.
Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps());
Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask);
Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan),
_mm_and_ps(zero_mask, p4f_inf));
// Do a single step of Newton's iteration.
x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five));
// Insert NaNs and Infs in all the right places.
return _mm_or_ps(x, infs_and_nans);
}
#else
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f prsqrt<Packet4f>(const Packet4f& x) {
// Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation.
return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x));
}
#endif
template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d prsqrt<Packet2d>(const Packet2d& x) {
// Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x));
}
// Hyperbolic Tangent function.
template <>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
ptanh<Packet4f>(const Packet4f& x) {
return internal::generic_fast_tanh_float(x);
}
} // end namespace internal
namespace numext {
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sqrt(const float &x)
{
return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x))));
}
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sqrt(const double &x)
{
#if EIGEN_COMP_GNUC_STRICT
// This works around a GCC bug generating poor code for _mm_sqrt_pd
// See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b
return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
#else
return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
#endif
}
} // end namespace numex
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_SSE_H
......@@ -22,9 +22,40 @@ namespace internal {
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif
#ifdef __FMA__
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD 1
#endif
#endif
#if (defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW) && (__GXX_ABI_VERSION < 1004)
// With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot
// have overloads for both types without linking error.
// One solution is to increase ABI version using -fabi-version=4 (or greater).
// Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper
// structure:
template<typename T>
struct eigen_packet_wrapper
{
EIGEN_ALWAYS_INLINE operator T&() { return m_val; }
EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; }
EIGEN_ALWAYS_INLINE eigen_packet_wrapper() {}
EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {}
EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) {
m_val = v;
return *this;
}
T m_val;
};
typedef eigen_packet_wrapper<__m128> Packet4f;
typedef eigen_packet_wrapper<__m128i> Packet4i;
typedef eigen_packet_wrapper<__m128d> Packet2d;
#else
typedef __m128 Packet4f;
typedef __m128i Packet4i;
typedef __m128d Packet2d;
#endif
template<> struct is_arithmetic<__m128> { enum { value = true }; };
template<> struct is_arithmetic<__m128i> { enum { value = true }; };
......@@ -58,51 +89,85 @@ template<> struct is_arithmetic<__m128d> { enum { value = true }; };
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
// Use the packet_traits defined in AVX/PacketMath.h instead if we're going
// to leverage AVX instructions.
#ifndef EIGEN_VECTORIZE_AVX
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
typedef Packet4f half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=4,
HasHalfPacket = 0,
HasDiv = 1,
HasSin = EIGEN_FAST_MATH,
HasCos = EIGEN_FAST_MATH,
HasLog = 1,
HasExp = 1,
HasSqrt = 1
HasSqrt = 1,
HasRsqrt = 1,
HasTanh = EIGEN_FAST_MATH,
HasBlend = 1
#ifdef EIGEN_VECTORIZE_SSE4_1
,
HasRound = 1,
HasFloor = 1,
HasCeil = 1
#endif
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 0,
HasDiv = 1,
HasExp = 1,
HasSqrt = 1
HasSqrt = 1,
HasRsqrt = 1,
HasBlend = 1
#ifdef EIGEN_VECTORIZE_SSE4_1
,
HasRound = 1,
HasFloor = 1,
HasCeil = 1
#endif
};
};
#endif
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size=4
size=4,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
#ifndef EIGEN_VECTORIZE_AVX
template<> struct scalar_div_cost<float,true> { enum { value = 7 }; };
template<> struct scalar_div_cost<double,true> { enum { value = 8 }; };
#endif
#if defined(_MSC_VER) && (_MSC_VER==1500)
#if EIGEN_COMP_MSVC==1500
// Workaround MSVC 9 internal compiler error.
// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
......@@ -110,14 +175,25 @@ template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { re
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps1(from); }
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
// GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction.
// However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203)
// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions.
// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply.
// Also note that with AVX, we want it to generate a vbroadcastss.
#if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__)
template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) {
return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0);
}
#endif
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
......@@ -139,7 +215,7 @@ template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
}
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
{
return psub(_mm_setr_epi32(0,0,0,0), a);
return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a);
}
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
......@@ -166,13 +242,13 @@ template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by SSE");
return pset1<Packet4i>(0);
}
// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
#ifdef __FMA__
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); }
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); }
......@@ -200,6 +276,17 @@ template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const
#endif
}
#ifdef EIGEN_VECTORIZE_SSE4_1
template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a) { return _mm_round_ps(a, 0); }
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) { return _mm_round_pd(a, 0); }
template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) { return _mm_ceil_ps(a); }
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return _mm_ceil_pd(a); }
template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) { return _mm_floor_ps(a); }
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return _mm_floor_pd(a); }
#endif
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
......@@ -218,16 +305,14 @@ template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, con
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const Packet4i*>(from)); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
#if defined(_MSC_VER)
#if EIGEN_COMP_MSVC
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
EIGEN_DEBUG_UNALIGNED_LOAD
#if (_MSC_VER==1600)
#if (EIGEN_COMP_MSVC==1600)
// NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
// (i.e., it does not generate an unaligned load!!
// TODO On most architectures this version should also be faster than a single _mm_loadu_ps
// so we could also enable it for MSVC08 but first we have to make this later does not generate crap when doing so...
__m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
res = _mm_loadh_pi(res, (const __m64*)(from+2));
return res;
......@@ -266,46 +351,77 @@ template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i tmp;
tmp = _mm_loadl_epi64(reinterpret_cast<const Packet4i*>(from));
tmp = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(from));
return vec4i_swizzle1(tmp, 0, 0, 1, 1);
}
template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<Packet4i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) {
EIGEN_DEBUG_UNALIGNED_STORE
_mm_storel_pd((to), from);
_mm_storeh_pd((to+1), from);
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
{
return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
return _mm_set_pd(from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
{
to[stride*0] = _mm_cvtss_f32(from);
to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1));
to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2));
to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
to[stride*0] = _mm_cvtsd_f64(from);
to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1));
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
to[stride*0] = _mm_cvtsi128_si32(from);
to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1));
to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2));
to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3));
}
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castps_pd(from)); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castsi128_pd(from)); }
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
{
Packet4f pa = _mm_set_ss(a);
pstore(to, vec4f_swizzle1(pa,0,0,0,0));
pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0)));
}
// some compilers might be tempted to perform multiple moves instead of using a vector path.
template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
{
Packet2d pa = _mm_set_sd(a);
pstore(to, vec2d_swizzle1(pa,0,0));
pstore(to, Packet2d(vec2d_swizzle1(pa,0,0)));
}
#ifndef EIGEN_VECTORIZE_AVX
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
#endif
#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
// Direct of the struct members fixed bug #62.
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#elif EIGEN_COMP_MSVC_STRICT
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
......@@ -323,7 +439,6 @@ template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{ return _mm_shuffle_epi32(a,0x1B); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
{
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
......@@ -344,6 +459,38 @@ template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
#endif
}
// with AVX, the default implementations based on pload1 are faster
#ifndef __AVX__
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
a3 = pload<Packet4f>(a);
a0 = vec4f_swizzle1(a3, 0,0,0,0);
a1 = vec4f_swizzle1(a3, 1,1,1,1);
a2 = vec4f_swizzle1(a3, 2,2,2,2);
a3 = vec4f_swizzle1(a3, 3,3,3,3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
#ifdef EIGEN_VECTORIZE_SSE3
a0 = _mm_loaddup_pd(a+0);
a1 = _mm_loaddup_pd(a+1);
a2 = _mm_loaddup_pd(a+2);
a3 = _mm_loaddup_pd(a+3);
#else
a1 = pload<Packet2d>(a);
a0 = vec2d_swizzle1(a1, 0,0);
a1 = vec2d_swizzle1(a1, 1,1);
a3 = pload<Packet2d>(a+2);
a2 = vec2d_swizzle1(a3, 0,0);
a3 = vec2d_swizzle1(a3, 1,1);
#endif
}
#endif
EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
{
vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
......@@ -353,47 +500,17 @@ EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
}
#ifdef EIGEN_VECTORIZE_SSE3
// TODO implement SSE2 versions as well as integer versions
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
return _mm_hadd_pd(vecs[0], vecs[1]);
}
// SSSE3 version:
// EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs)
// {
// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
// }
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f tmp0 = _mm_hadd_ps(a,a);
return pfirst(_mm_hadd_ps(tmp0, tmp0));
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return pfirst(_mm_hadd_pd(a, a)); }
// SSSE3 version:
// EIGEN_STRONG_INLINE float predux(const Packet4i& a)
// {
// Packet4i tmp0 = _mm_hadd_epi32(a,a);
// return pfirst(_mm_hadd_epi32(tmp0, tmp0));
// }
#else
// SSE2 versions
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
Packet4f tmp0, tmp1, tmp2;
......@@ -414,10 +531,45 @@ template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
}
#endif // SSE3
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
// Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
// (from Nehalem to Haswell)
// #ifdef EIGEN_VECTORIZE_SSE3
// Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3));
// return pfirst<Packet4f>(_mm_hadd_ps(tmp, tmp));
// #else
Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
return pfirst<Packet4f>(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
// #endif
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
// Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures
// (from Nehalem to Haswell)
// #ifdef EIGEN_VECTORIZE_SSE3
// return pfirst<Packet2d>(_mm_hadd_pd(a, a));
// #else
return pfirst<Packet2d>(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
// #endif
}
#ifdef EIGEN_VECTORIZE_SSSE3
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
}
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i tmp0 = _mm_hadd_epi32(a,a);
return pfirst<Packet4i>(_mm_hadd_epi32(tmp0,tmp0));
}
#else
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1));
return pfirst(tmp) + pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1));
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
......@@ -433,18 +585,18 @@ template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
return _mm_add_epi32(tmp0, tmp2);
}
#endif
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
return pfirst<Packet4f>(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
return pfirst<Packet2d>(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
......@@ -460,14 +612,18 @@ template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
return pfirst<Packet4f>(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
return pfirst<Packet2d>(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
return pfirst<Packet4i>(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
#else
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
......@@ -475,20 +631,25 @@ template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
return aux0<aux2 ? aux0 : aux2;
#endif // EIGEN_VECTORIZE_SSE4_1
}
// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
return pfirst<Packet4f>(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
}
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
return pfirst<Packet2d>(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
}
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2)));
return pfirst<Packet4i>(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1)));
#else
// after some experiments, it is seems this is the fastest way to implement it
// for GCC (eg., it does not like using std::min after the pstore !!)
EIGEN_ALIGN16 int aux[4];
......@@ -496,9 +657,10 @@ template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
return aux0>aux2 ? aux0 : aux2;
#endif // EIGEN_VECTORIZE_SSE4_1
}
#if (defined __GNUC__)
#if EIGEN_COMP_GNUC
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
// {
// Packet4f res = b;
......@@ -606,6 +768,110 @@ struct palign_impl<Offset,Packet2d>
};
#endif
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4f,4>& kernel) {
_MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
__m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]);
kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]);
kernel.packet[1] = tmp;
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
__m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]);
__m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]);
__m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]);
__m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]);
kernel.packet[0] = _mm_unpacklo_epi64(T0, T1);
kernel.packet[1] = _mm_unpackhi_epi64(T0, T1);
kernel.packet[2] = _mm_unpacklo_epi64(T2, T3);
kernel.packet[3] = _mm_unpackhi_epi64(T2, T3);
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
const __m128i zero = _mm_setzero_si128();
const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
__m128i false_mask = _mm_cmpeq_epi32(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_epi8(thenPacket, elsePacket, false_mask);
#else
return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) {
const __m128 zero = _mm_setzero_ps();
const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]);
__m128 false_mask = _mm_cmpeq_ps(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_ps(thenPacket, elsePacket, false_mask);
#else
return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
const __m128d zero = _mm_setzero_pd();
const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]);
__m128d false_mask = _mm_cmpeq_pd(select, zero);
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blendv_pd(thenPacket, elsePacket, false_mask);
#else
return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pinsertfirst(const Packet4f& a, float b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_ps(a,pset1<Packet4f>(b),1);
#else
return _mm_move_ss(a, _mm_load_ss(&b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pinsertfirst(const Packet2d& a, double b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_pd(a,pset1<Packet2d>(b),1);
#else
return _mm_move_sd(a, _mm_load_sd(&b));
#endif
}
template<> EIGEN_STRONG_INLINE Packet4f pinsertlast(const Packet4f& a, float b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_ps(a,pset1<Packet4f>(b),(1<<3));
#else
const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x0,0x0,0x0,0xFFFFFFFF));
return _mm_or_ps(_mm_andnot_ps(mask, a), _mm_and_ps(mask, pset1<Packet4f>(b)));
#endif
}
template<> EIGEN_STRONG_INLINE Packet2d pinsertlast(const Packet2d& a, double b)
{
#ifdef EIGEN_VECTORIZE_SSE4_1
return _mm_blend_pd(a,pset1<Packet2d>(b),(1<<1));
#else
const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x0,0xFFFFFFFF,0xFFFFFFFF));
return _mm_or_pd(_mm_andnot_pd(mask, a), _mm_and_pd(mask, pset1<Packet2d>(b)));
#endif
}
// Scalar path for pmadd with FMA to ensure consistency with vectorized path.
#ifdef __FMA__
template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) {
return ::fmaf(a,b,c);
}
template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) {
return ::fma(a,b,c);
}
#endif
} // end namespace internal
} // end namespace Eigen
......
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TYPE_CASTING_SSE_H
#define EIGEN_TYPE_CASTING_SSE_H
namespace Eigen {
namespace internal {
template <>
struct type_casting_traits<float, int> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet4i pcast<Packet4f, Packet4i>(const Packet4f& a) {
return _mm_cvttps_epi32(a);
}
template <>
struct type_casting_traits<int, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet4i, Packet4f>(const Packet4i& a) {
return _mm_cvtepi32_ps(a);
}
template <>
struct type_casting_traits<double, float> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 2,
TgtCoeffRatio = 1
};
};
template<> EIGEN_STRONG_INLINE Packet4f pcast<Packet2d, Packet4f>(const Packet2d& a, const Packet2d& b) {
return _mm_shuffle_ps(_mm_cvtpd_ps(a), _mm_cvtpd_ps(b), (1 << 2) | (1 << 6));
}
template <>
struct type_casting_traits<float, double> {
enum {
VectorizedCast = 1,
SrcCoeffRatio = 1,
TgtCoeffRatio = 2
};
};
template<> EIGEN_STRONG_INLINE Packet2d pcast<Packet4f, Packet2d>(const Packet4f& a) {
// Simply discard the second half of the input
return _mm_cvtps_pd(a);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_TYPE_CASTING_SSE_H