Newer
Older
 * Copyright (c) 2015-2016, Luca Fulchir<luca@fulchir.it>, All rights reserved.
 *
 * This file is part of "libRaptorQ".
 *
 * libRaptorQ is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * libRaptorQ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * and a copy of the GNU Lesser General Public License
 * along with libRaptorQ.  If not, see <http://www.gnu.org/licenses/>.
 */
#include "Graph.hpp"
#include "Precode_Matrix.hpp"
///////////////////
//
// Precode_Matrix
//
///////////////////
// The template parameter "IS_OFFLINE" lets us identify
// wether we should save the computation we are doing for offline usage
// or we can avoid saving it, and thus be faster and more memory efficient.
template <Save_Computation IS_OFFLINE>
std::pair<Precode_Result, DenseMtx> Precode_Matrix<IS_OFFLINE>::intermediate (
												DenseMtx &D, Op_Vec &ops,
												bool &keep_working,
												Work_State *thread_keep_working)
{
	// rfc 6330, pg 32
	// "c" and "d" are used to track row and columns exchange.
	// since Eigen should track row exchange without actually swapping
	// the data, we can call DenseMtx.row.swap without more overhead
	// than actually having "d". so we're left only with "c",
	// which is needed 'cause D does not have _params.L columns.
	std::vector<uint16_t> c;
	c.clear();
	c.reserve (_params.L);
	DenseMtx C, X = A;
	bool success;
	uint16_t i, u;
	for (i = 0; i < _params.L; ++i)
		c.emplace_back (i);
	std::tie (success, i, u) = decode_phase1 (X, D, c , ops,
											keep_working, thread_keep_working);
	if (stop (keep_working, thread_keep_working))
		return std::make_pair (Precode_Result::STOPPED, DenseMtx());
		return std::make_pair (Precode_Result::FAILED, DenseMtx());
	success = decode_phase2 (D, i, u, ops, keep_working, thread_keep_working);
	if (stop (keep_working, thread_keep_working))
		return std::make_pair (Precode_Result::STOPPED, DenseMtx());
		return std::make_pair (Precode_Result::FAILED, DenseMtx());
	if (stop (keep_working, thread_keep_working))
		return std::make_pair (Precode_Result::STOPPED, DenseMtx());
	decode_phase4 (D, i, u, ops, keep_working, thread_keep_working);
	if (stop (keep_working, thread_keep_working))
		return std::make_pair (Precode_Result::STOPPED, DenseMtx());
	if (!success)
		return std::make_pair (Precode_Result::FAILED, DenseMtx());
	decode_phase5 (D, i, ops, keep_working, thread_keep_working);
	if (stop (keep_working, thread_keep_working))
		return std::make_pair (Precode_Result::STOPPED, DenseMtx());
	if (!success)
		return std::make_pair (Precode_Result::FAILED, DenseMtx());
	// CHECK DISABLED: phase4  does not modify A, as it's never readed
	// again. So the Matrix is *not* an identity anymore.
	//auto id_A = A.block (0, 0, _params.L, _params.L);
	//for (uint16_t row = 0; row < id_A.rows(); ++row) {
	//	for (uint16_t col = 0; col < id_A.cols(); ++col) {
	//		if (static_cast<uint8_t> (id_A (row, col)) != (row == col ? 1 : 0))
	//			return C;
	//	}
	//}
	if (IS_OFFLINE == Save_Computation::ON)
		ops.emplace_back (new Operation_Reorder (c));
	C = DenseMtx (D.rows(), D.cols());
	for (i = 0; i < _params.L; ++i)
		C.row (c[i]) = D.row (i);
	return std::make_pair (Precode_Result::DONE, C);
std::pair<Precode_Result, DenseMtx> Precode_Matrix<IS_OFFLINE>::intermediate (
										DenseMtx &D, const Bitmask &mask,
										Op_Vec &ops, bool &keep_working,
										Work_State *thread_keep_working)
	Precode_Result res;
	DenseMtx C;
	std::tie (res, C) = intermediate (D, ops, keep_working, thread_keep_working);
	if (res != Precode_Result::DONE)
		return std::make_pair (res, C);
	DenseMtx missing = DenseMtx (mask.get_holes(), D.cols());
	uint16_t holes = mask.get_holes();
	uint16_t row = 0;
	for (uint16_t hole = 0; hole < mask._max_nonrepair && holes > 0; ++hole) {
		if (mask.exists (hole))
			continue;
		DenseMtx ret = encode (C, hole);
	return std::make_pair (Precode_Result::DONE, missing);
template <Save_Computation IS_OFFLINE>
void Precode_Matrix<IS_OFFLINE>::decode_phase0 (const Bitmask &mask,
										const std::vector<uint32_t> &repair_esi)
{
	// D was built as follows:
	// - non-repair esi in their place
	// - for each hole in non-repair esi, put the *first available* repair esi
	// - compact remaining repair esis
	// substitute missing symbols in A with appropriate repair line.
	// we substituted some symbols with repair ones (rfc 6330, phase1, pg35),
	// so we need to fix the corresponding rows in A, to say that a
	// repair symbol comes from a set of other symbols.
	const size_t padding = _params.K_padded - mask._max_nonrepair;
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
	uint16_t holes = mask.get_holes();
	auto r_esi = repair_esi.begin();
	for (uint16_t hole_from = 0; hole_from < _params.L && holes > 0;
																++hole_from) {
		if (mask.exists (hole_from))
			continue;
		// now hole_from is the esi hole, and hole_to is our repair sym.
		// put the repair dependancy in the hole row
		auto depends = _params.get_idxs (static_cast<uint16_t> (
															*r_esi + padding));
		++r_esi;
		// erease the line, mark the dependencies of the repair symbol.
		const uint16_t row = hole_from + _params.H + _params.S;
		for (uint16_t col = 0; col < A.cols(); ++col) {
			A (row, col) = 0;
		}
		for (auto isi: depends) {
			A (row, isi) = 1;
		}
		--holes;
	}
	// we put the repair symbols in the right places,
	// but we still need to do the same modifications to A also for repair
	// symbols. And those have been compacted.
	for (uint16_t rep_row = static_cast<uint16_t> (A.rows() - _repair_overhead);
												rep_row < A.rows(); ++rep_row) {
		auto depends = _params.get_idxs (static_cast<uint16_t> (
															*r_esi + padding));
		++r_esi;
		// erease the line, mark the dependencies of the repair symbol.
		for (uint16_t col = 0; col < A.cols(); ++col) {
			A (rep_row, col) = 0;
		}
		for (auto isi: depends) {
			A (rep_row, isi) = 1;
		}
	}
}
	Precode_Matrix<IS_OFFLINE>::decode_phase1 (DenseMtx &X, DenseMtx &D,
												std::vector<uint16_t> &c,
												Op_Vec &ops, bool &keep_working,
												Work_State *thread_keep_working)
	std::vector<std::pair<bool, size_t>> tracking;	// is_hdpc, row_degree
	// optimization: r_rows tracks the rows that can be chosen, and if the row
	// is added to the graph, track also the id of one of the nodes with "1",
	// so that it will be easy to verify it. The row represents an edge
	// between nodes (1) of a maximum component (see rfc 6330, pg 33-34)
	std::vector<std::pair<uint16_t, uint16_t>> r_rows;
	tracking.reserve (static_cast<size_t> (A.rows()));
	uint16_t i = 0;
	uint16_t u = _params.P;
	auto V_tmp = A.block (0, 0, A.rows(), A.cols() - u);
	// track hdpc rows and original degree of each row
	for (uint16_t row = 0; row < V_tmp.rows(); ++row) {
		size_t original_degree = 0;
		for (uint16_t col = 0; col < V_tmp.cols(); ++col)
			original_degree += static_cast<uint8_t> (V_tmp (row, col));
		bool is_hdpc = (row >= _params.S && row < (_params.S + _params.H));
		tracking.emplace_back (is_hdpc, original_degree);;
	}
	while (i + u < _params.L) {
		if (stop (keep_working, thread_keep_working))
			return std::tuple<bool,uint16_t,uint16_t> (false, 0, 0); // stop
		auto V = A.block (i, i, A.rows() - i, (A.cols() - i) - u);
		uint16_t chosen = static_cast<uint16_t> (V.rows());
		// search for minium "r" (number of nonzero elements in row)
		uint16_t non_zero = static_cast<uint16_t> (V.cols()) + 1;
		bool only_two_ones = false;
		r_rows.clear();
		Graph G = Graph (static_cast<uint16_t> (V.cols()));
		// build graph, get minimum non_zero and track rows that
		// will be needed later
		for (uint16_t row = 0; row < V.rows(); ++row) {
			if (stop (keep_working, thread_keep_working))
				return std::tuple<bool,uint16_t,uint16_t> (false, 0, 0); // stop
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
			uint16_t non_zero_tmp = 0;
			// if the row is NOT HDPC and has two ones,
			// it represents an edge in a graph between the two columns with "1"
			uint16_t ones = 0;
			std::array<uint16_t, 2> ones_idx = {{0, 0}};
			bool next_row = false;	// true => non_zero_tmp > zero_tmp
			for (uint16_t col = 0; col < V.cols(); ++col) {
				if (static_cast<uint8_t> (V (row, col)) != 0) {
					if (++non_zero_tmp > non_zero) {
						next_row = true;
						break;
					}
				}
				if (static_cast<uint8_t> (V (row, col)) == 1) {
					// count the ones and update ones_idx at the same time
					if (++ones <= 2)
						ones_idx[ones - 1] = col;
				}
			}
			if (next_row || non_zero_tmp == 0)
				continue;
			// now non_zero >= non_zero_tmp, and both > 0
			// rationale & optimization, rfc 6330 pg 34
			// we need to track the rows that have the least number "r"
			// of non-zero elements.
			// if r == 2 and even just one row has the two elements to "1",
			// then we need to track only the rows with "1" in the two
			// non-zero elements.
			if (non_zero == non_zero_tmp) {
				// do not add if "only_two_ones && ones != 2"
				if (!only_two_ones || ones == 2)
					r_rows.emplace_back (row, ones_idx[0]);
			} else {
				// non_zero > non_zero_tmp)
				non_zero = non_zero_tmp;
				r_rows.clear();
				r_rows.emplace_back (row, ones_idx[0]);
			}
			if (ones == 2) {
				// track the maximum component in the graph
				if (non_zero == 2) {
					if (!tracking[row].first)	// if not HDPC row
						G.connect (ones_idx[0], ones_idx[1]);
					if (!only_two_ones) {
						// must keep only rows with two ones,
						// so delete the other ones.
						only_two_ones = true;
						r_rows.clear();
						r_rows.emplace_back (row, ones_idx[0]);
					}
				}
			}
		}
		if (non_zero == V.cols() + 1)
			return std::tuple<bool,uint16_t,uint16_t> (false, 0, 0); // failure
		// search for r.
		if (non_zero != 2) {
			// search for row with minimum original degree.
			// Precedence to non-hdpc
			uint16_t min_row = static_cast<uint16_t> (V.rows());
			uint16_t min_row_hdpc = min_row;
			size_t min_degree = ~(static_cast<size_t> (0));	// max possible
			size_t min_degree_hdpc = min_degree;
			for (auto row_pair : r_rows) {
				uint16_t row = row_pair.first;
				if (tracking[row + i].first) {
					// HDPC
					if (tracking[row + i].second < min_degree_hdpc) {
						min_degree_hdpc = tracking[row + i].second;
						min_row_hdpc = row;
					}
				} else {
					// NON-HDPC
					if (tracking[row + i].second < min_degree) {
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
						min_row = row;
					}
				}
			}
			if (min_row != V.rows()) {
				chosen = min_row;
			} else {
				chosen = min_row_hdpc;
			}
		} else {
			// non_zero == 2 => graph, else any r
			if (only_two_ones) {
				for (auto id : r_rows) {
					if (G.is_max (id.second)) {
						chosen = id.first;
						break;
					}
				}
			}
			if (chosen == V.rows()) {
				chosen = r_rows[0].first;
			}
		}	// done choosing
		// swap chosen row and first V row in A (not just in V)
		if (chosen != 0) {
			A.row (i).swap (A.row (chosen + i));
			X.row (i).swap (X.row (chosen + i));
			D.row (i).swap (D.row (chosen + i));
			std::swap (tracking[i], tracking[chosen + i]);
			if (IS_OFFLINE == Save_Computation::ON)
				ops.emplace_back (new Operation_Swap (i, chosen + i));
		}
		// column swap in A. looking at the first V row,
		// the first column must be nonzero, and the other non-zero must be
		// put to the last columns of V.
		if (static_cast<uint8_t> (V (0, 0)) == 0) {
			uint16_t idx = 1;
			for (; idx < V.cols(); ++idx) {
				if (static_cast<uint8_t> (V (0, idx)) != 0)
					break;
			}
			A.col (i).swap (A.col (i + idx));
			X.col (i).swap (X.col (i + idx));
			std::swap (c[i], c[i + idx]);	// rfc6330, pg32
		}
		uint16_t col = static_cast<uint16_t> (V.cols()) - 1;
		uint16_t swap = 1;	// at most we swapped V(0,0)
		if (stop (keep_working, thread_keep_working))
			return std::tuple<bool,uint16_t,uint16_t> (false, 0, 0); // stop
		// put all the non-zero cols to the last columns.
		for (; col > V.cols() - non_zero; --col) {
			if (static_cast<uint8_t> (V (0, col)) != 0)
				continue;
			while (swap < col && static_cast<uint8_t> (V (0, swap)) == 0)
				++swap;
			if (swap >= col)
				break;	// line full of zeros, nothing to swap
			// now V(0, col) == 0 and V(0, swap != 0. swap them
			A.col (col + i).swap (A.col (swap + i));
			X.col (col + i).swap (X.col (swap + i));
			std::swap (c[col + i], c[swap + i]);	//rfc6330, pg32
		}
		if (stop (keep_working, thread_keep_working))
			return std::tuple<bool,uint16_t,uint16_t> (false, 0, 0); // stop
		// now add a multiple of the row V(0) to the other rows of *A* so that
		// the other rows of *V* have a zero first column.
		for (uint16_t row = 1; row < V.rows(); ++row) {
			if (static_cast<uint8_t> (V (row, 0)) != 0) {
				const Octet multiple = V (row, 0) / V (0, 0);
				A.row (row + i) += A.row (i) * multiple;
				D.row (row + i) += D.row (i) * multiple;	//rfc6330, pg32
				if (IS_OFFLINE == Save_Computation::ON) {
					ops.emplace_back (new Operation_Add_Mul (row + i, i,
																	multiple));
				}
			}
		}
		// finally increment i by 1, u by (non_zero - 1) and repeat.
		++i;
		u += non_zero - 1;
	}
	return std::make_tuple (true, i, u);
}
template<Save_Computation IS_OFFLINE>
bool Precode_Matrix<IS_OFFLINE>::decode_phase2 (DenseMtx &D, const uint16_t i,
												const uint16_t u, Op_Vec &ops,
												bool &keep_working,
												Work_State *thread_keep_working)
{
	// rfc 6330, pg 35
	// U_Lower parameters (u x u):
	const uint16_t row_start = i, row_end = static_cast<uint16_t> (_params.L);
	const uint16_t col_start = static_cast<uint16_t> (A.cols() - u);
	// try to bring U_Lower to Identity with gaussian elimination.
	// remember that all row swaps affect A as well, not just U_Lower
	for (uint16_t row = row_start; row < row_end; ++row) {
		if (stop (keep_working, thread_keep_working))
			return false; // stop
		// make sure the considered row has nonzero on the diagonal
		uint16_t row_nonzero = row;
		const uint16_t col_diag = col_start + (row - row_start);
		for (; row_nonzero < row_end; ++row_nonzero) {
			if (static_cast<uint8_t> (A (row_nonzero, col_diag)) != 0) {
				break;
			}
		}
		if (row_nonzero == row_end) {
			// U_Lower is square, we can return early (rank < u, not solvable)
			return false;
		} else if (row != row_nonzero) {
			A.row (row).swap (A.row (row_nonzero));
			D.row (row).swap (D.row (row_nonzero));
			if (IS_OFFLINE == Save_Computation::ON)
				ops.emplace_back (new Operation_Swap (row, row_nonzero));
		}
		// U_Lower (row, row) != 0. make it 1.
		if (static_cast<uint8_t> (A (row, col_diag)) > 1) {
			const auto divisor = A (row, col_diag);
			A.row (row) /= divisor;
			D.row (row) /= divisor;
			if (IS_OFFLINE == Save_Computation::ON)
				ops.emplace_back (new Operation_Div (row, divisor));
		}
		// make U_Lower and identity up to row
		for (uint16_t del_row = row_start; del_row < row_end; ++del_row) {
			if (stop (keep_working, thread_keep_working))
				return false;	// stop
			// row "del_row" start with zero. but row "row" now starts
			// with "1", so this is easy.
			const auto multiple = A (del_row, col_diag);
			if (static_cast<uint8_t> (multiple) != 0) {
				A.row (del_row) -= A.row (row) * multiple;
				D.row (del_row) -= D.row (row) * multiple;
				if (IS_OFFLINE == Save_Computation::ON)
					ops.emplace_back (new Operation_Add_Mul (del_row, row,
																	multiple));
			}
		}
	}
	// A should be resized to LxL.
	// we don't really care, as we should not gain that much.
	// A.conservativeResize (params.L, params.L);
	return true;
}
template<Save_Computation IS_OFFLINE>
void Precode_Matrix<IS_OFFLINE>::decode_phase3 (const DenseMtx &X, DenseMtx &D,
												const uint16_t i, Op_Vec &ops)
{
	// rfc 6330, pg 35:
	//	To this end, the matrix X is
	//	multiplied with the submatrix of A consisting of the first i rows of
	//	A. After this operation, the submatrix of A consisting of the
	//	intersection of the first i rows and columns equals to X, whereas the
	//	matrix U_upper is transformed to a sparse form.
	if (IS_OFFLINE == Save_Computation::ON)
		ops.emplace_back (new Operation_Block (sub_X));
	auto sub_A = A.block (0, 0, i, A.cols());
	sub_A = sub_X * sub_A;
	// Now fix D, too
	DenseMtx D_2 = D;
	D.block (0, 0, sub_X.cols(), D.cols()) = sub_X *
										D_2.block (0,0, sub_X.cols(), D.cols());
template<Save_Computation IS_OFFLINE>
void Precode_Matrix<IS_OFFLINE>::decode_phase4 (DenseMtx &D, const uint16_t i,
												const uint16_t u, Op_Vec &ops,
												bool &keep_working,
												Work_State *thread_keep_working)
{
	// rfc 6330, pg 35:
	// For each of the first i rows of U_upper, do the following: if the row
	// has a nonzero entry at position j, and if the value of that nonzero
	// entry is b, then add to this row b times row j of I_u
	// basically: zero out U_upper. we still need to update D each time, though.
	auto U_upper = A.block (0, A.cols() - u, i, u);
	for (uint16_t row = 0; row < U_upper.rows(); ++row) {
		if (stop (keep_working, thread_keep_working))
			return;
		for (uint16_t col = 0; col < U_upper.cols(); ++col) {
			// col == j
			auto multiple = U_upper (row, col);
			if (static_cast<uint8_t> (multiple) != 0) {
				// U_upper is never read again, so we can avoid some writes
				//U_upper (row, col) = 0;
				// "b times row j of I_u" => row "j" in U_lower.
				// aka: U_upper.rows() + j
				uint16_t row_2 = static_cast<uint16_t> (U_upper.rows()) + col;
				D.row (row) += D.row (row_2) * multiple;
				if (IS_OFFLINE == Save_Computation::ON) {
					ops.emplace_back (new Operation_Add_Mul (row, row_2,
																	multiple));
				}
template<Save_Computation IS_OFFLINE>
void Precode_Matrix<IS_OFFLINE>::decode_phase5 (DenseMtx &D, const uint16_t i,
												Op_Vec &ops, bool &keep_working,
												Work_State *thread_keep_working)
		if (stop (keep_working, thread_keep_working))
			return;
		if (static_cast<uint8_t> (A (j, j)) != 1) {
			// A(j, j) is actually never 0, by construction.
			const auto multiple = A (j, j);
			A.row (j) /= multiple;
			D.row (j) /= multiple;
			if (IS_OFFLINE == Save_Computation::ON)
				ops.emplace_back (new Operation_Div (j, multiple));
		}
		for (uint16_t tmp = 0; tmp < j; ++tmp) {	//tmp == "l" in rfc6330
			const auto multiple = A (j, tmp);
			if (static_cast<uint8_t> (multiple) != 0) {
				A.row (j) += A.row (tmp) * multiple;
				D.row (j) += D.row (tmp) * multiple;
				if (IS_OFFLINE == Save_Computation::ON)
					ops.emplace_back (new Operation_Add_Mul (j, tmp, multiple));
template<Save_Computation IS_OFFLINE>
DenseMtx Precode_Matrix<IS_OFFLINE>::encode (const DenseMtx &C,
													const uint32_t ISI) const
{
	// Generate repair symbols. same algorithm as "get_idxs"
	// rfc6330, pg29
	DenseMtx ret;
	ret = DenseMtx (1, C.cols());
	Tuple t = _params.tuple (ISI);
	ret.row (0) = C.row (t.b);
		t.b = (t.b + t.a) % _params.W;
		ret.row (0) += C.row (t.b);
	}
	while (t.b1 >= _params.P)
		t.b1 = (t.b1 + t.a1) % _params.P1;
	ret.row (0) += C.row (_params.W + t.b1);
	for (uint16_t j = 1; j < t.d1; ++j) {
		t.b1 = (t.b1 + t.a1) % _params.P1;
		while (t.b1 >= _params.P)
			t.b1 = (t.b1 + t.a1) % _params.P1;
		ret.row (0) += C.row (_params.W + t.b1);
	}
	return ret;
}
}	// namespace RaptorQ
}	// namespace Impl