Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
* Copyright (c) 2015, Luca Fulchir<luker@fenrirproject.org>, All rights reserved.
*
* This file is part of "libRaptorQ".
*
* libRaptorQ is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* libRaptorQ is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* and a copy of the GNU Lesser General Public License
* along with libRaptorQ. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <iostream>
#include <random>
#include "../src/RaptorQ.hpp"
#include <vector>
// Demonstration of how to use the C++ interface
// it's pretty simple, we generate some input,
// then encode, drop some packets (source and repair)
// and finally decode everything.
bool decode (uint32_t mysize, std::mt19937_64 &rnd, float drop_prob,
uint8_t overhead);
bool decode (uint32_t mysize, std::mt19937_64 &rnd, float drop_prob,
uint8_t overhead)
{
std::vector<uint32_t> myvec;
//initialize vector with random data
std::uniform_int_distribution<uint32_t> distr(0, ~static_cast<uint32_t>(0));
myvec.reserve (mysize);
for (uint32_t i = 0; i < mysize; ++i)
myvec.push_back (distr(rnd));
// std::pair<symbol id (esi), symbol>
std::vector<std::pair<uint32_t, std::vector<uint32_t>>> encoded;
// symbol and sub-symbol sizes
const uint16_t subsymbol = 4;
const uint16_t symbol_size = 8;
auto enc_it = myvec.begin();
// work with one block only.
RaptorQ::Encoder<std::vector<uint32_t>::iterator,
std::vector<uint32_t>::iterator> enc (
enc_it, myvec.end(), subsymbol, symbol_size, 1073741824);
if (!enc) {
std::cout << "Coud not initialize encoder.\n";
return false;
}
enc.precompute(1, false);
if (drop_prob > 100.0)
drop_prob = 90.0; // this is still too high probably.
std::uniform_real_distribution<float> drop (0.0, 100.0);
int32_t repair = overhead;
for (auto block : enc) {
// Now get the source and repair symbols.
// make sure that at the end we end with "block.symbols() + overhead"
// symbols, so that decoding is possible
for (auto sym_it = block.begin_source(); sym_it != block.end_source();
++sym_it) {
float dropped = drop (rnd);
if (dropped <= drop_prob) {
// we dropped one source symbol, we need one more repair.
++repair;
continue;
}
// create a place where to save our source symbol
std::vector<uint32_t> source_sym;
source_sym.reserve (symbol_size / 4);
source_sym.insert (source_sym.begin(), symbol_size / 4, 0);
auto it = source_sym.begin();
// save the symbol
auto written = (*sym_it) (it, source_sym.end());
if (written != source_sym.size()) {
std::cout << "Could not get the whole source symbol!\n";
return false;
}
// finally add it to the encoded vector
encoded.emplace_back ((*sym_it).id(), std::move(source_sym));
}
// now get (overhead + source_symbol_lost) repair symbols.
std::cout << "Source Packet lost: " << repair - overhead << "\n";
auto sym_it = block.begin_repair();
for (; repair >= 0 && sym_it != block.end_repair (block.max_repair());
++sym_it) {
// repair symbols can be lost, too!
float dropped = drop (rnd);
if (dropped <= drop_prob) {
continue;
}
--repair;
// create a place where to save our source symbol
std::vector<uint32_t> repair_sym;
repair_sym.reserve (symbol_size / 4);
repair_sym.insert (repair_sym.begin(), symbol_size / 4, 0);
auto it = repair_sym.begin();
// save the repair symbol
auto written = (*sym_it) (it, repair_sym.end());
if (written != repair_sym.size()) {
std::cout << "Could not get the whole repair symbol!\n";
return false;
}
// finally add it to the encoded vector
encoded.emplace_back ((*sym_it).id(), std::move(repair_sym));
}
if (sym_it == block.end_repair (block.max_repair())) {
// we dropped waaaay too many symbols! how much are you planning to
// lose, again???
std::cout << "Maybe losing " << drop_prob << "% is too much?\n";
return false;
}
}
auto oti_scheme = enc.OTI_Scheme_Specific();
auto oti_common = enc.OTI_Common();
RaptorQ::Decoder<std::vector<uint32_t>::iterator, std::vector<uint32_t>::
iterator> dec (oti_common, oti_scheme);
std::vector<uint32_t> received;
received.reserve (mysize);
// make sure that there's enough place in "received" to get the
// whole decoded data.
for (uint32_t i = 0; i < mysize; ++i)
received.push_back (0);
for (size_t i = 0; i < encoded.size(); ++i) {
auto it = encoded[i].second.begin();
dec.add_symbol (it, encoded[i].second.end(), encoded[i].first);
}
auto re_it = received.begin();
// decode the first block
// you can actually call ".decode(...)" as many times
// as you want. It will only start decoding once
// it has enough data.
auto decoded = dec.decode(re_it, received.end(), 0);
if (decoded != mysize) {
std::cout << "Couldn't decode: " << mysize << "\n";
return false;
} else {
std::cout << "Decoded: " << mysize << "\n";
}
for (uint16_t i = 0; i < mysize; ++i) {
if (myvec[i] != received[i]) {
std::cout << "FAILED, but we though otherwise! " << mysize << " - "
<< drop_prob << " - " <<
static_cast<int> (overhead) << "\n";
return false;
}
}
return true;
}
int main (void)
{
// get a random number generator
std::mt19937_64 rnd;
std::ifstream rand("/dev/random");
uint64_t seed = 0;
rand.read (reinterpret_cast<char *> (&seed), sizeof(seed));
rand.close ();
rnd.seed (seed);
// encode and decode
bool ret = decode (500, rnd, 20.0, 4);
return (ret == true ? 0 : -1);
}