Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <Eigen/SVD>
template <typename MatrixType>
void cod() {
typedef typename MatrixType::Index Index;
Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
MatrixType::RowsAtCompileTime>
MatrixQType;
MatrixType matrix;
createRandomPIMatrixOfRank(rank, rows, cols, matrix);
CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
VERIFY(rank == cod.rank());
VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
VERIFY(!cod.isInjective());
VERIFY(!cod.isInvertible());
VERIFY(!cod.isSurjective());
MatrixQType q = cod.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType z = cod.matrixZ();
VERIFY_IS_UNITARY(z);
MatrixType t;
t.setZero(rows, cols);
t.topLeftCorner(rank, rank) =
cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
MatrixType c = q * t * z * cod.colsPermutation().inverse();
VERIFY_IS_APPROX(matrix, c);
MatrixType exact_solution = MatrixType::Random(cols, cols2);
MatrixType rhs = matrix * exact_solution;
MatrixType cod_solution = cod.solve(rhs);
VERIFY_IS_APPROX(rhs, matrix * cod_solution);
// Verify that we get the same minimum-norm solution as the SVD.
JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
MatrixType svd_solution = svd.solve(rhs);
VERIFY_IS_APPROX(cod_solution, svd_solution);
MatrixType pinv = cod.pseudoInverse();
VERIFY_IS_APPROX(cod_solution, pinv * rhs);
}
template <typename MatrixType, int Cols2>
void cod_fixedsize() {
enum {
Rows = MatrixType::RowsAtCompileTime,
Cols = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
Matrix<Scalar, Rows, Cols> matrix;
createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > cod(matrix);
VERIFY(rank == cod.rank());
VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
VERIFY(cod.isInjective() == (rank == Rows));
VERIFY(cod.isSurjective() == (rank == Cols));
VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
Matrix<Scalar, Cols, Cols2> exact_solution;
exact_solution.setRandom(Cols, Cols2);
Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
VERIFY_IS_APPROX(rhs, matrix * cod_solution);
// Verify that we get the same minimum-norm solution as the SVD.
JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
VERIFY_IS_APPROX(cod_solution, svd_solution);
}
typedef typename MatrixType::Index Index;
Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType m1;
createRandomPIMatrixOfRank(rank,rows,cols,m1);
ColPivHouseholderQR<MatrixType> qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
VERIFY(!qr.isInjective());
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixQType q = qr.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
MatrixType c = q * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reach the singularity threshold.
RealScalar threshold =
sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
{
Index size = rows;
do {
m1 = MatrixType::Random(size,size);
qr.compute(m1);
} while(!qr.isInvertible());
MatrixType m1_inv = qr.inverse();
m3 = m1 * MatrixType::Random(size,cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m2, m1_inv*m3);
}
}
template<typename MatrixType, int Cols2> void qr_fixedsize()
{
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
Matrix<Scalar,Rows,Cols> m1;
createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
VERIFY_IS_EQUAL(rank, qr.rank());
VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
VERIFY_IS_APPROX(m1, c);
Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
m2 = qr.solve(m3);
VERIFY_IS_APPROX(m3, m1*m2);
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Verify that the absolute value of the diagonal elements in R are
// non-increasing until they reache the singularity threshold.
RealScalar threshold =
sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << rank
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
}
// This test is meant to verify that pivots are chosen such that
// even for a graded matrix, the diagonal of R falls of roughly
// monotonically until it reaches the threshold for singularity.
// We use the so-called Kahan matrix, which is a famous counter-example
// for rank-revealing QR. See
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
// page 3 for more detail.
template<typename MatrixType> void qr_kahan_matrix()
{
using std::sqrt;
using std::abs;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = 300, cols = rows;
MatrixType m1;
m1.setZero(rows,cols);
RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
RealScalar c = std::sqrt(1 - s*s);
RealScalar pow_s_i(1.0); // pow(s,i)
for (Index i = 0; i < rows; ++i) {
m1(i, i) = pow_s_i;
m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
pow_s_i *= s;
}
m1 = (m1 + m1.transpose()).eval();
ColPivHouseholderQR<MatrixType> qr(m1);
MatrixType r = qr.matrixQR().template triangularView<Upper>();
RealScalar threshold =
std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
RealScalar x = numext::abs(r(i, i));
RealScalar y = numext::abs(r(i + 1, i + 1));
if (x < threshold && y < threshold) continue;
if (!test_isApproxOrLessThan(y, x)) {
for (Index j = 0; j < (std::min)(rows, cols); ++j) {
std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
}
std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
<< ", threshold=" << threshold << std::endl;
}
VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
}
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
}
template<typename MatrixType> void qr_invertible()
{
using std::log;
using std::abs;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
int size = internal::random<int>(10,50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size,size);
if (internal::is_same<RealScalar,float>::value)
{
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size,size*2);
m1 += a * a.adjoint();
}
ColPivHouseholderQR<MatrixType> qr(m1);
m3 = MatrixType::Random(size,size);
m2 = qr.solve(m3);
//VERIFY_IS_APPROX(m3, m1*m2);
// now construct a matrix with prescribed determinant
m1.setZero();
for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
RealScalar absdet = abs(m1.diagonal().prod());
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()
{
MatrixType tmp;
ColPivHouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
VERIFY_RAISES_ASSERT(qr.isInjective())
VERIFY_RAISES_ASSERT(qr.isSurjective())
VERIFY_RAISES_ASSERT(qr.isInvertible())
VERIFY_RAISES_ASSERT(qr.inverse())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
}
void test_qr_colpivoting()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr<MatrixXf>() );
CALL_SUBTEST_2( qr<MatrixXd>() );
CALL_SUBTEST_3( qr<MatrixXcd>() );
CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( cod<MatrixXf>() );
CALL_SUBTEST_2( cod<MatrixXd>() );
CALL_SUBTEST_3( cod<MatrixXcd>() );
CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
}
CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );