Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
using namespace std;
template<typename MatrixType> void permutationmatrices(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options };
typedef PermutationMatrix<Rows> LeftPermutationType;
typedef Matrix<int, Rows, 1> LeftPermutationVectorType;
typedef Map<LeftPermutationType> MapLeftPerm;
typedef PermutationMatrix<Cols> RightPermutationType;
typedef Matrix<int, Cols, 1> RightPermutationVectorType;
typedef Map<RightPermutationType> MapRightPerm;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m_original = MatrixType::Random(rows,cols);
LeftPermutationVectorType lv;
randomPermutationVector(lv, rows);
LeftPermutationType lp(lv);
RightPermutationVectorType rv;
randomPermutationVector(rv, cols);
RightPermutationType rp(rv);
MatrixType m_permuted = MatrixType::Random(rows,cols);
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_original * rp, 1); // 1 temp for sub expression "lp * m_original"
for (int i=0; i<rows; i++)
for (int j=0; j<cols; j++)
VERIFY_IS_APPROX(m_permuted(lv(i),j), m_original(i,rv(j)));
Matrix<Scalar,Rows,Rows> lm(lp);
Matrix<Scalar,Cols,Cols> rm(rp);
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
m_permuted = m_original;
VERIFY_EVALUATION_COUNT(m_permuted = lp * m_permuted * rp, 1);
VERIFY_IS_APPROX(m_permuted, lm*m_original*rm);
VERIFY_IS_APPROX(lp.inverse()*m_permuted*rp.inverse(), m_original);
VERIFY_IS_APPROX(lv.asPermutation().inverse()*m_permuted*rv.asPermutation().inverse(), m_original);
VERIFY_IS_APPROX(MapLeftPerm(lv.data(),lv.size()).inverse()*m_permuted*MapRightPerm(rv.data(),rv.size()).inverse(), m_original);
VERIFY((lp*lp.inverse()).toDenseMatrix().isIdentity());
VERIFY((lv.asPermutation()*lv.asPermutation().inverse()).toDenseMatrix().isIdentity());
VERIFY((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv.data(),lv.size()).inverse()).toDenseMatrix().isIdentity());
LeftPermutationVectorType lv2;
randomPermutationVector(lv2, rows);
LeftPermutationType lp2(lv2);
Matrix<Scalar,Rows,Rows> lm2(lp2);
VERIFY_IS_APPROX((lp*lp2).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((lv.asPermutation()*lv2.asPermutation()).toDenseMatrix().template cast<Scalar>(), lm*lm2);
VERIFY_IS_APPROX((MapLeftPerm(lv.data(),lv.size())*MapLeftPerm(lv2.data(),lv2.size())).toDenseMatrix().template cast<Scalar>(), lm*lm2);
LeftPermutationType identityp;
identityp.setIdentity(rows);
VERIFY_IS_APPROX(m_original, identityp*m_original);
VERIFY_EVALUATION_COUNT(m_permuted.noalias()= lp.inverse() * m_permuted, 1); // 1 temp to allocate the mask
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp.inverse(), 1); // 1 temp to allocate the mask
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = lp * m_permuted, 1); // 1 temp to allocate the mask
VERIFY_EVALUATION_COUNT(m_permuted.noalias() = m_permuted * rp, 1); // 1 temp to allocate the mask
VERIFY_IS_APPROX(m_permuted, m_original*rp);
if(rows>1 && cols>1)
{
lp2 = lp;
Index i = internal::random<Index>(0, rows-1);
Index j;
do j = internal::random<Index>(0, rows-1); while(j==i);
lp2.applyTranspositionOnTheLeft(i, j);
lm = lp;
lm.row(i).swap(lm.row(j));
VERIFY_IS_APPROX(lm, lp2.toDenseMatrix().template cast<Scalar>());
RightPermutationType rp2 = rp;
i = internal::random<Index>(0, cols-1);
do j = internal::random<Index>(0, cols-1); while(j==i);
rp2.applyTranspositionOnTheRight(i, j);
rm = rp;
rm.col(i).swap(rm.col(j));
VERIFY_IS_APPROX(rm, rp2.toDenseMatrix().template cast<Scalar>());
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
}
{
// simple compilation check
Matrix<Scalar, Cols, Cols> A = rp;
Matrix<Scalar, Cols, Cols> B = rp.transpose();
VERIFY_IS_APPROX(A, B.transpose());
}
}
template<typename T>
void bug890()
{
typedef Matrix<T, Dynamic, Dynamic> MatrixType;
typedef Matrix<T, Dynamic, 1> VectorType;
typedef Stride<Dynamic,Dynamic> S;
typedef Map<MatrixType, Aligned, S> MapType;
typedef PermutationMatrix<Dynamic> Perm;
VectorType v1(2), v2(2), op(4), rhs(2);
v1 << 666,667;
op << 1,0,0,1;
rhs << 42,42;
Perm P(2);
P.indices() << 1, 0;
MapType(v1.data(),2,1,S(1,1)) = P * MapType(rhs.data(),2,1,S(1,1));
VERIFY_IS_APPROX(v1, (P * rhs).eval());
MapType(v1.data(),2,1,S(1,1)) = P.inverse() * MapType(rhs.data(),2,1,S(1,1));
VERIFY_IS_APPROX(v1, (P.inverse() * rhs).eval());
}
void test_permutationmatrices()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( permutationmatrices(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( permutationmatrices(Matrix3f()) );
CALL_SUBTEST_3( permutationmatrices(Matrix<double,3,3,RowMajor>()) );
CALL_SUBTEST_4( permutationmatrices(Matrix4d()) );
CALL_SUBTEST_5( permutationmatrices(Matrix<double,40,60>()) );
CALL_SUBTEST_6( permutationmatrices(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 30)) );
CALL_SUBTEST_7( permutationmatrices(MatrixXcf(15, 10)) );
}