Skip to content
evaluators.cpp 19.3 KiB
Newer Older
Luker's avatar
Luker committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

#include "main.h"

namespace Eigen {

  template<typename Lhs,typename Rhs>
  const Product<Lhs,Rhs>
  prod(const Lhs& lhs, const Rhs& rhs)
  {
    return Product<Lhs,Rhs>(lhs,rhs);
  }

  template<typename Lhs,typename Rhs>
  const Product<Lhs,Rhs,LazyProduct>
  lazyprod(const Lhs& lhs, const Rhs& rhs)
  {
    return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
  }
  
  template<typename DstXprType, typename SrcXprType>
  EIGEN_STRONG_INLINE
  DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src)
  {
    call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.const_cast_derived();
  }
  
  template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
  EIGEN_STRONG_INLINE
  const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src)
  {
    call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.expression();
  }
  
  template<typename DstXprType, typename SrcXprType>
  EIGEN_STRONG_INLINE
  DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src)
  {
    #ifdef EIGEN_NO_AUTOMATIC_RESIZING
    eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
                                                          : (dst.rows() == src.rows() && dst.cols() == src.cols())))
                && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
  #else
    dst.const_cast_derived().resizeLike(src.derived());
  #endif
    
    call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
    return dst.const_cast_derived();
  }

  template<typename DstXprType, typename SrcXprType>
  void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar,typename SrcXprType::Scalar>());
  }

  template<typename DstXprType, typename SrcXprType>
  void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar,typename SrcXprType::Scalar>());
  }
  
  template<typename DstXprType, typename SrcXprType>
  void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
  {
    typedef typename DstXprType::Scalar Scalar;
    call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>());
  }

  namespace internal {
    template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
    EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
    {
      call_assignment_no_alias(dst.expression(), src, func);
    }
  }
  
}

template<typename XprType> long get_cost(const XprType& ) { return Eigen::internal::evaluator<XprType>::CoeffReadCost; }

using namespace std;

#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
#define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());

void test_evaluators()
{
  // Testing Matrix evaluator and Transpose
  Vector2d v = Vector2d::Random();
  const Vector2d v_const(v);
  Vector2d v2;
  RowVector2d w;

  VERIFY_IS_APPROX_EVALUATOR(v2, v);
  VERIFY_IS_APPROX_EVALUATOR(v2, v_const);

  // Testing Transpose
  VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
  VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());

  copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
  VERIFY_IS_APPROX(w,v.transpose().eval());

  copy_using_evaluator(w.transpose(), v_const);
  VERIFY_IS_APPROX(w,v_const.transpose().eval());

  // Testing Array evaluator
  {
    ArrayXXf a(2,3);
    ArrayXXf b(3,2);
    a << 1,2,3, 4,5,6;
    const ArrayXXf a_const(a);

    VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());

    VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());

    // Testing CwiseNullaryOp evaluator
    copy_using_evaluator(w, RowVector2d::Random());
    VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...

    VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());

    VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
    
    // mix CwiseNullaryOp and transpose
    VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
  }

  {
    // test product expressions
    int s = internal::random<int>(1,100);
    MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
    a.setRandom();
    b.setRandom();
    c.setRandom();
    d.setRandom();
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
    VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
    VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
    VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);

    // check that prod works even with aliasing present
    c = a*a;
    copy_using_evaluator(a, prod(a,a));
    VERIFY_IS_APPROX(a,c);

    // check compound assignment of products
    d = c;
    add_assign_using_evaluator(c.noalias(), prod(a,b));
    d.noalias() += a*b;
    VERIFY_IS_APPROX(c, d);

    d = c;
    subtract_assign_using_evaluator(c.noalias(), prod(a,b));
    d.noalias() -= a*b;
    VERIFY_IS_APPROX(c, d);
  }

  {
    // test product with all possible sizes
    int s = internal::random<int>(1,100);
    Matrix<float,      1,      1> m11, res11;  m11.setRandom(1,1);
    Matrix<float,      1,      4> m14, res14;  m14.setRandom(1,4);
    Matrix<float,      1,Dynamic> m1X, res1X;  m1X.setRandom(1,s);
    Matrix<float,      4,      1> m41, res41;  m41.setRandom(4,1);
    Matrix<float,      4,      4> m44, res44;  m44.setRandom(4,4);
    Matrix<float,      4,Dynamic> m4X, res4X;  m4X.setRandom(4,s);
    Matrix<float,Dynamic,      1> mX1, resX1;  mX1.setRandom(s,1);
    Matrix<float,Dynamic,      4> mX4, resX4;  mX4.setRandom(s,4);
    Matrix<float,Dynamic,Dynamic> mXX, resXX;  mXX.setRandom(s,s);

    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
    VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
    VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
    VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
    VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
    VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
  }

  {
    ArrayXXf a(2,3);
    ArrayXXf b(3,2);
    a << 1,2,3, 4,5,6;
    const ArrayXXf a_const(a);
    
    // this does not work because Random is eval-before-nested: 
    // copy_using_evaluator(w, Vector2d::Random().transpose());

    // test CwiseUnaryOp
    VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
    VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
    VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
    VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());

    // test CwiseBinaryOp
    VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
    VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));

    // dynamic matrices and arrays
    MatrixXd mat1(6,6), mat2(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
    VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
    copy_using_evaluator(mat2.transpose(), mat1);
    VERIFY_IS_APPROX(mat2.transpose(), mat1);

    ArrayXXd arr1(6,6), arr2(6,6);
    VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
    
    // test automatic resizing
    mat2.resize(3,3);
    VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
    arr2.resize(9,9);
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);

    // test direct traversal
    Matrix3f m3;
    Array33f a3;
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity());  // matrix, nullary
    // TODO: find a way to test direct traversal with array
    VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity());  // unary
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero());  // binary
    VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2));  // block

    // test linear traversal
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero());  // matrix, nullary
    VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero());  // array
    VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero());  // unary
    VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3);  // binary  

    // test inner vectorization
    Matrix4f m4, m4src = Matrix4f::Random();
    Array44f a4, a4src = Matrix4f::Random();
    VERIFY_IS_APPROX_EVALUATOR(m4, m4src);  // matrix
    VERIFY_IS_APPROX_EVALUATOR(a4, a4src);  // array
    VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose());  // transpose
    // TODO: find out why Matrix4f::Zero() does not allow inner vectorization
    VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src);  // unary
    VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src);  // binary

    // test linear vectorization
    MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
    ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc);  // matrix
    VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc);  // array
    VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose());  // transpose
    VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6));  // nullary
    VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc);  // unary
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc);  // binary

    // test blocks and slice vectorization
    VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
    VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));

    Matrix4f m4ref = m4;
    copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
    m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
    VERIFY_IS_APPROX(m4, m4ref);

    mX.setIdentity(20,20);
    MatrixXf mXref = MatrixXf::Identity(20,20);
    mXsrc = MatrixXf::Random(9,12);
    copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
    mXref.block(4, 4, 9, 12) = mXsrc;
    VERIFY_IS_APPROX(mX, mXref);

    // test Map
    const float raw[3] = {1,2,3};
    float buffer[3] = {0,0,0};
    Vector3f v3;
    Array3f a3f;
    VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
    VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
    Vector3f::Map(buffer) = 2*v3;
    VERIFY(buffer[0] == 2);
    VERIFY(buffer[1] == 4);
    VERIFY(buffer[2] == 6);

    // test CwiseUnaryView
    mat1.setRandom();
    mat2.setIdentity();
    MatrixXcd matXcd(6,6), matXcd_ref(6,6);
    copy_using_evaluator(matXcd.real(), mat1);
    copy_using_evaluator(matXcd.imag(), mat2);
    matXcd_ref.real() = mat1;
    matXcd_ref.imag() = mat2;
    VERIFY_IS_APPROX(matXcd, matXcd_ref);

    // test Select
    VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));

    // test Replicate
    mXsrc = MatrixXf::Random(6, 6);
    VectorXf vX = VectorXf::Random(6);
    mX.resize(6, 6);
    VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
    matXcd.resize(12, 12);
    VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
    VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));

    // test partial reductions
    VectorXd vec1(6);
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());

    // test MatrixWrapper and ArrayWrapper
    mat1.setRandom(6,6);
    arr1.setRandom(6,6);
    VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
    VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
    VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
    VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
    mat2.array() = arr1 * arr1;
    VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
    arr2.matrix() = MatrixXd::Identity(6,6);
    VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());

    // test Reverse
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
    VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
    arr2.reverse() = arr1;
    VERIFY_IS_APPROX(arr2, arr1.reverse());
    mat2.array() = mat1.array().reverse();
    VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());

    // test Diagonal
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
    vec1.resize(5);
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
    VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
    vec1.setRandom();

    mat2 = mat1;
    copy_using_evaluator(mat1.diagonal(1), vec1);
    mat2.diagonal(1) = vec1;
    VERIFY_IS_APPROX(mat1, mat2);

    copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
    mat2.diagonal<-1>() = mat2.diagonal(1);
    VERIFY_IS_APPROX(mat1, mat2);
  }
  
  {
    // test swapping
    MatrixXd mat1, mat2, mat1ref, mat2ref;
    mat1ref = mat1 = MatrixXd::Random(6, 6);
    mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
    swap_using_evaluator(mat1, mat2);
    mat1ref.swap(mat2ref);
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
    mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);

    swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
    mat1.row(2).swap(mat2.col(3).transpose());
    VERIFY_IS_APPROX(mat1, mat1ref);
    VERIFY_IS_APPROX(mat2, mat2ref);
  }

  {
    // test compound assignment
    const Matrix4d mat_const = Matrix4d::Random(); 
    Matrix4d mat, mat_ref;
    mat = mat_ref = Matrix4d::Identity();
    add_assign_using_evaluator(mat, mat_const);
    mat_ref += mat_const;
    VERIFY_IS_APPROX(mat, mat_ref);

    subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
    mat_ref.row(1) -= 2*mat_ref.row(2);
    VERIFY_IS_APPROX(mat, mat_ref);

    const ArrayXXf arr_const = ArrayXXf::Random(5,3); 
    ArrayXXf arr, arr_ref;
    arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
    multiply_assign_using_evaluator(arr, arr_const);
    arr_ref *= arr_const;
    VERIFY_IS_APPROX(arr, arr_ref);

    divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
    arr_ref.row(1) /= (arr_ref.row(2) + 1);
    VERIFY_IS_APPROX(arr, arr_ref);
  }
  
  {
    // test triangular shapes
    MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6);
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>()));
    
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>()));
    
    A.setRandom();B.setRandom();
    VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>()));
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Upper>() = A;
    copy_using_evaluator(B.triangularView<Upper>(), A);
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)");
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Lower>() = A.triangularView<Lower>();
    copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>());
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())");
    
    
    A.setRandom();B.setRandom();
    C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose();
    copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose());
    VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())");
    
    
    A.setRandom();B.setRandom(); C = B; D = A;
    C.triangularView<Upper>().swap(D.triangularView<Upper>());
    swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>());
    VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())");
    
    
    VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A));
    
    VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A));
  }

  {
    // test diagonal shapes
    VectorXd d = VectorXd::Random(6);
    MatrixXd A = MatrixXd::Random(6,6), B(6,6);
    A.setRandom();B.setRandom();
    
    VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A));
    VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal()));
  }

  {
    // test CoeffReadCost
    Matrix4d a, b;
    VERIFY_IS_EQUAL( get_cost(a), 1 );
    VERIFY_IS_EQUAL( get_cost(a+b), 3);
    VERIFY_IS_EQUAL( get_cost(2*a+b), 4);
    VERIFY_IS_EQUAL( get_cost(a*b), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(b)), 15);
    VERIFY_IS_EQUAL( get_cost(a*(a*b)), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a*b)), 15);
    VERIFY_IS_EQUAL( get_cost(a*(a+b)), 1);
    VERIFY_IS_EQUAL( get_cost(a.lazyProduct(a+b)), 15);
  }
}