Skip to content
PardisoSupport.h 19.6 KiB
Newer Older
Luker's avatar
Luker committed
/*
 Copyright (c) 2011, Intel Corporation. All rights reserved.

 Redistribution and use in source and binary forms, with or without modification,
 are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.
 * Neither the name of Intel Corporation nor the names of its contributors may
   be used to endorse or promote products derived from this software without
   specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 ********************************************************************************
 *   Content : Eigen bindings to Intel(R) MKL PARDISO
 ********************************************************************************
*/

#ifndef EIGEN_PARDISOSUPPORT_H
#define EIGEN_PARDISOSUPPORT_H

namespace Eigen { 

template<typename _MatrixType> class PardisoLU;
template<typename _MatrixType, int Options=Upper> class PardisoLLT;
template<typename _MatrixType, int Options=Upper> class PardisoLDLT;

namespace internal
{
Luker's avatar
Luker committed
  template<typename IndexType>
Luker's avatar
Luker committed
  struct pardiso_run_selector
  {
Luker's avatar
Luker committed
    static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a,
                      IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x)
Luker's avatar
Luker committed
    {
Luker's avatar
Luker committed
      IndexType error = 0;
Luker's avatar
Luker committed
      ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
      return error;
    }
  };
  template<>
  struct pardiso_run_selector<long long int>
  {
Luker's avatar
Luker committed
    typedef long long int IndexType;
    static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a,
                      IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x)
Luker's avatar
Luker committed
    {
Luker's avatar
Luker committed
      IndexType error = 0;
Luker's avatar
Luker committed
      ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error);
      return error;
    }
  };

  template<class Pardiso> struct pardiso_traits;

  template<typename _MatrixType>
  struct pardiso_traits< PardisoLU<_MatrixType> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
Luker's avatar
Luker committed
    typedef typename _MatrixType::StorageIndex StorageIndex;
Luker's avatar
Luker committed
  };

  template<typename _MatrixType, int Options>
  struct pardiso_traits< PardisoLLT<_MatrixType, Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
Luker's avatar
Luker committed
    typedef typename _MatrixType::StorageIndex StorageIndex;
Luker's avatar
Luker committed
  };

  template<typename _MatrixType, int Options>
  struct pardiso_traits< PardisoLDLT<_MatrixType, Options> >
  {
    typedef _MatrixType MatrixType;
    typedef typename _MatrixType::Scalar Scalar;
    typedef typename _MatrixType::RealScalar RealScalar;
Luker's avatar
Luker committed
    typedef typename _MatrixType::StorageIndex StorageIndex;    
Luker's avatar
Luker committed
  };

Luker's avatar
Luker committed
} // end namespace internal
Luker's avatar
Luker committed

template<class Derived>
Luker's avatar
Luker committed
class PardisoImpl : public SparseSolverBase<Derived>
Luker's avatar
Luker committed
{
Luker's avatar
Luker committed
  protected:
    typedef SparseSolverBase<Derived> Base;
    using Base::derived;
    using Base::m_isInitialized;
    
Luker's avatar
Luker committed
    typedef internal::pardiso_traits<Derived> Traits;
  public:
Luker's avatar
Luker committed
    using Base::_solve_impl;
    
Luker's avatar
Luker committed
    typedef typename Traits::MatrixType MatrixType;
    typedef typename Traits::Scalar Scalar;
    typedef typename Traits::RealScalar RealScalar;
Luker's avatar
Luker committed
    typedef typename Traits::StorageIndex StorageIndex;
    typedef SparseMatrix<Scalar,RowMajor,StorageIndex> SparseMatrixType;
Luker's avatar
Luker committed
    typedef Matrix<Scalar,Dynamic,1> VectorType;
Luker's avatar
Luker committed
    typedef Matrix<StorageIndex, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<StorageIndex, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    typedef Array<StorageIndex,64,1,DontAlign> ParameterType;
Luker's avatar
Luker committed
    enum {
Luker's avatar
Luker committed
      ScalarIsComplex = NumTraits<Scalar>::IsComplex,
      ColsAtCompileTime = Dynamic,
      MaxColsAtCompileTime = Dynamic
Luker's avatar
Luker committed
    };

    PardisoImpl()
    {
Luker's avatar
Luker committed
      eigen_assert((sizeof(StorageIndex) >= sizeof(_INTEGER_t) && sizeof(StorageIndex) <= 8) && "Non-supported index type");
Luker's avatar
Luker committed
      m_iparm.setZero();
      m_msglvl = 0; // No output
Luker's avatar
Luker committed
      m_isInitialized = false;
Luker's avatar
Luker committed
    }

    ~PardisoImpl()
    {
      pardisoRelease();
    }

    inline Index cols() const { return m_size; }
    inline Index rows() const { return m_size; }
  
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix appears to be negative.
      */
    ComputationInfo info() const
    {
Luker's avatar
Luker committed
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
Luker's avatar
Luker committed
      return m_info;
    }

    /** \warning for advanced usage only.
      * \returns a reference to the parameter array controlling PARDISO.
      * See the PARDISO manual to know how to use it. */
    ParameterType& pardisoParameterArray()
    {
      return m_iparm;
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    Derived& analyzePattern(const MatrixType& matrix);
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    Derived& factorize(const MatrixType& matrix);

    Derived& compute(const MatrixType& matrix);

Luker's avatar
Luker committed
    template<typename Rhs,typename Dest>
    void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
Luker's avatar
Luker committed

  protected:
    void pardisoRelease()
    {
Luker's avatar
Luker committed
      if(m_isInitialized) // Factorization ran at least once
Luker's avatar
Luker committed
      {
Luker's avatar
Luker committed
        internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, -1, internal::convert_index<StorageIndex>(m_size),0, 0, 0, m_perm.data(), 0,
                                                          m_iparm.data(), m_msglvl, NULL, NULL);
        m_isInitialized = false;
Luker's avatar
Luker committed
      }
    }

    void pardisoInit(int type)
    {
      m_type = type;
      bool symmetric = std::abs(m_type) < 10;
      m_iparm[0] = 1;   // No solver default
Luker's avatar
Luker committed
      m_iparm[1] = 2;   // use Metis for the ordering
      m_iparm[2] = 0;   // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??)
Luker's avatar
Luker committed
      m_iparm[3] = 0;   // No iterative-direct algorithm
      m_iparm[4] = 0;   // No user fill-in reducing permutation
Luker's avatar
Luker committed
      m_iparm[5] = 0;   // Write solution into x, b is left unchanged
Luker's avatar
Luker committed
      m_iparm[6] = 0;   // Not in use
      m_iparm[7] = 2;   // Max numbers of iterative refinement steps
      m_iparm[8] = 0;   // Not in use
      m_iparm[9] = 13;  // Perturb the pivot elements with 1E-13
      m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS
      m_iparm[11] = 0;  // Not in use
      m_iparm[12] = symmetric ? 0 : 1;  // Maximum weighted matching algorithm is switched-off (default for symmetric).
                                        // Try m_iparm[12] = 1 in case of inappropriate accuracy
      m_iparm[13] = 0;  // Output: Number of perturbed pivots
      m_iparm[14] = 0;  // Not in use
      m_iparm[15] = 0;  // Not in use
      m_iparm[16] = 0;  // Not in use
      m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU
      m_iparm[18] = -1; // Output: Mflops for LU factorization
      m_iparm[19] = 0;  // Output: Numbers of CG Iterations
      
      m_iparm[20] = 0;  // 1x1 pivoting
      m_iparm[26] = 0;  // No matrix checker
      m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0;
      m_iparm[34] = 1;  // C indexing
Luker's avatar
Luker committed
      m_iparm[36] = 0;  // CSR
      m_iparm[59] = 0;  // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core
      
      memset(m_pt, 0, sizeof(m_pt));
Luker's avatar
Luker committed
    }

  protected:
    // cached data to reduce reallocation, etc.
    
Luker's avatar
Luker committed
    void manageErrorCode(Index error) const
Luker's avatar
Luker committed
    {
      switch(error)
      {
        case 0:
          m_info = Success;
          break;
        case -4:
        case -7:
          m_info = NumericalIssue;
          break;
        default:
          m_info = InvalidInput;
      }
    }

    mutable SparseMatrixType m_matrix;
Luker's avatar
Luker committed
    mutable ComputationInfo m_info;
    bool m_analysisIsOk, m_factorizationIsOk;
    StorageIndex m_type, m_msglvl;
Luker's avatar
Luker committed
    mutable void *m_pt[64];
    mutable ParameterType m_iparm;
    mutable IntColVectorType m_perm;
    Index m_size;
    
};

template<class Derived>
Derived& PardisoImpl<Derived>::compute(const MatrixType& a)
{
  m_size = a.rows();
  eigen_assert(a.rows() == a.cols());

  pardisoRelease();
  m_perm.setZero(m_size);
  derived().getMatrix(a);
  
  Index error;
Luker's avatar
Luker committed
  error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 12, internal::convert_index<StorageIndex>(m_size),
                                                            m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                            m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
Luker's avatar
Luker committed
  manageErrorCode(error);
  m_analysisIsOk = true;
  m_factorizationIsOk = true;
Luker's avatar
Luker committed
  m_isInitialized = true;
Luker's avatar
Luker committed
  return derived();
}

template<class Derived>
Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a)
{
  m_size = a.rows();
  eigen_assert(m_size == a.cols());

  pardisoRelease();
  m_perm.setZero(m_size);
  derived().getMatrix(a);
  
  Index error;
Luker's avatar
Luker committed
  error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 11, internal::convert_index<StorageIndex>(m_size),
                                                            m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                            m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
Luker's avatar
Luker committed
  
  manageErrorCode(error);
  m_analysisIsOk = true;
  m_factorizationIsOk = false;
Luker's avatar
Luker committed
  m_isInitialized = true;
Luker's avatar
Luker committed
  return derived();
}

template<class Derived>
Derived& PardisoImpl<Derived>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  eigen_assert(m_size == a.rows() && m_size == a.cols());
  
  derived().getMatrix(a);

Luker's avatar
Luker committed
  Index error;
  error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 22, internal::convert_index<StorageIndex>(m_size),
                                                            m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                            m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL);
Luker's avatar
Luker committed
  
  manageErrorCode(error);
  m_factorizationIsOk = true;
  return derived();
}

Luker's avatar
Luker committed
template<class Derived>
Luker's avatar
Luker committed
template<typename BDerived,typename XDerived>
Luker's avatar
Luker committed
void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const
Luker's avatar
Luker committed
{
  if(m_iparm[0] == 0) // Factorization was not computed
Luker's avatar
Luker committed
  {
    m_info = InvalidInput;
    return;
  }
Luker's avatar
Luker committed

  //Index n = m_matrix.rows();
  Index nrhs = Index(b.cols());
  eigen_assert(m_size==b.rows());
  eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported");
  eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported");
  eigen_assert(((nrhs == 1) || b.outerStride() == b.rows()));


//  switch (transposed) {
//    case SvNoTrans    : m_iparm[11] = 0 ; break;
//    case SvTranspose  : m_iparm[11] = 2 ; break;
//    case SvAdjoint    : m_iparm[11] = 1 ; break;
//    default:
//      //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the PARDISO backend\n";
//      m_iparm[11] = 0;
//  }

  Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data());
  Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp;
  
  // Pardiso cannot solve in-place
  if(rhs_ptr == x.derived().data())
  {
    tmp = b;
    rhs_ptr = tmp.data();
  }
  
  Index error;
Luker's avatar
Luker committed
  error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 33, internal::convert_index<StorageIndex>(m_size),
                                                            m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(),
                                                            m_perm.data(), internal::convert_index<StorageIndex>(nrhs), m_iparm.data(), m_msglvl,
                                                            rhs_ptr, x.derived().data());

  manageErrorCode(error);
Luker's avatar
Luker committed
}


/** \ingroup PardisoSupport_Module
  * \class PardisoLU
  * \brief A sparse direct LU factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
  * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible.
  * The vectors or matrices X and B can be either dense or sparse.
  *
Luker's avatar
Luker committed
  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
  * \code solver.pardisoParameterArray()[59] = 1; \endcode
  *
Luker's avatar
Luker committed
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
Luker's avatar
Luker committed
  * \implsparsesolverconcept
  *
  * \sa \ref TutorialSparseSolverConcept, class SparseLU
Luker's avatar
Luker committed
  */
template<typename MatrixType>
class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> >
{
  protected:
Luker's avatar
Luker committed
    typedef PardisoImpl<PardisoLU> Base;
Luker's avatar
Luker committed
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLU<MatrixType> >;

  public:

    using Base::compute;
    using Base::solve;

    PardisoLU()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 13 : 11);
    }

Luker's avatar
Luker committed
    explicit PardisoLU(const MatrixType& matrix)
Luker's avatar
Luker committed
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 13 : 11);
      compute(matrix);
    }
  protected:
    void getMatrix(const MatrixType& matrix)
    {
      m_matrix = matrix;
Luker's avatar
Luker committed
      m_matrix.makeCompressed();
Luker's avatar
Luker committed
    }
};

/** \ingroup PardisoSupport_Module
  * \class PardisoLLT
  * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization
  * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite.
  * The vectors or matrices X and B can be either dense or sparse.
  *
Luker's avatar
Luker committed
  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
  * \code solver.pardisoParameterArray()[59] = 1; \endcode
  *
Luker's avatar
Luker committed
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used.
  *         Upper|Lower can be used to tell both triangular parts can be used as input.
  *
Luker's avatar
Luker committed
  * \implsparsesolverconcept
  *
  * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT
Luker's avatar
Luker committed
  */
template<typename MatrixType, int _UpLo>
class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> >
{
  protected:
    typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >;

  public:

Luker's avatar
Luker committed
    typedef typename Base::StorageIndex StorageIndex;
Luker's avatar
Luker committed
    enum { UpLo = _UpLo };
    using Base::compute;

    PardisoLLT()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 4 : 2);
    }

Luker's avatar
Luker committed
    explicit PardisoLLT(const MatrixType& matrix)
Luker's avatar
Luker committed
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? 4 : 2);
      compute(matrix);
    }
    
  protected:
    
    void getMatrix(const MatrixType& matrix)
    {
      // PARDISO supports only upper, row-major matrices
Luker's avatar
Luker committed
      PermutationMatrix<Dynamic,Dynamic,StorageIndex> p_null;
Luker's avatar
Luker committed
      m_matrix.resize(matrix.rows(), matrix.cols());
      m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
Luker's avatar
Luker committed
      m_matrix.makeCompressed();
Luker's avatar
Luker committed
    }
};

/** \ingroup PardisoSupport_Module
  * \class PardisoLDLT
  * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library
  *
  * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization
  * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite.
  * For complex matrices, A can also be symmetric only, see the \a Options template parameter.
  * The vectors or matrices X and B can be either dense or sparse.
  *
Luker's avatar
Luker committed
  * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set:
  * \code solver.pardisoParameterArray()[59] = 1; \endcode
  *
Luker's avatar
Luker committed
  * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used.
  *         Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix.
  *         Upper|Lower can be used to tell both triangular parts can be used as input.
  *
Luker's avatar
Luker committed
  * \implsparsesolverconcept
  *
  * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT
Luker's avatar
Luker committed
  */
template<typename MatrixType, int Options>
class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> >
{
  protected:
    typedef PardisoImpl< PardisoLDLT<MatrixType,Options> > Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    using Base::pardisoInit;
    using Base::m_matrix;
    friend class PardisoImpl< PardisoLDLT<MatrixType,Options> >;

  public:

Luker's avatar
Luker committed
    typedef typename Base::StorageIndex StorageIndex;
Luker's avatar
Luker committed
    using Base::compute;
    enum { UpLo = Options&(Upper|Lower) };

    PardisoLDLT()
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
    }

Luker's avatar
Luker committed
    explicit PardisoLDLT(const MatrixType& matrix)
Luker's avatar
Luker committed
      : Base()
    {
      pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2);
      compute(matrix);
    }
    
    void getMatrix(const MatrixType& matrix)
    {
      // PARDISO supports only upper, row-major matrices
Luker's avatar
Luker committed
      PermutationMatrix<Dynamic,Dynamic,StorageIndex> p_null;
Luker's avatar
Luker committed
      m_matrix.resize(matrix.rows(), matrix.cols());
      m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null);
Luker's avatar
Luker committed
      m_matrix.makeCompressed();
Luker's avatar
Luker committed
    }
};

} // end namespace Eigen

#endif // EIGEN_PARDISOSUPPORT_H