Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ROTATION2D_H
#define EIGEN_ROTATION2D_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Rotation2D
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
* interface to Quaternion in order to facilitate the writing of generic algorithms
* dealing with rotations.
*
* \sa class Quaternion, class Transform
*/
namespace internal {
template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
{
typedef _Scalar Scalar;
};
} // end namespace internal
template<typename _Scalar>
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
{
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
public:
using Base::operator*;
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
Scalar m_angle;
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
/** Default constructor wihtout initialization. The represented rotation is undefined. */
EIGEN_DEVICE_FUNC Rotation2D() {}
/** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
*
* \sa fromRotationMatrix()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
{
fromRotationMatrix(m.derived());
}
EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
/** \returns the rotation angle in [0,2pi] */
EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
}
/** \returns the rotation angle in [-pi,pi] */
EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
return tmp;
}
EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
{ return Rotation2D(m_angle + other.m_angle); }
EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
{ m_angle += other.m_angle; return *this; }
/** Applies the rotation to a 2D vector */
EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle from the rotation matrix.
*
* This method is an alias for fromRotationMatrix()
*
* \sa fromRotationMatrix()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
{ return fromRotationMatrix(m.derived()); }
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
{
Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
return Rotation2D(m_angle + dist*t);
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
};
/** \ingroup Geometry_Module
* single precision 2D rotation type */
typedef Rotation2D<float> Rotation2Df;
/** \ingroup Geometry_Module
* double precision 2D rotation type */
typedef Rotation2D<double> Rotation2Dd;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle
* from the rotation matrix.
*/
template<typename Scalar>
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
}
/** Constructs and \returns an equivalent 2x2 rotation matrix.
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const