Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
#define EIGEN_SELFADJOINTEIGENSOLVER_H
#include "./Tridiagonalization.h"
namespace Eigen {
template<typename _MatrixType>
class GeneralizedSelfAdjointEigenSolver;
namespace internal {
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
template<typename MatrixType, typename DiagType, typename SubDiagType>
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
}
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class SelfAdjointEigenSolver
*
* \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
* class template.
*
* A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
* matrices, this means that the matrix is symmetric: it equals its
* transpose. This class computes the eigenvalues and eigenvectors of a
* selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
* \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
* selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
* the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
* matrices, the matrix \f$ V \f$ is always invertible). This is called the
* eigendecomposition.
*
* The algorithm exploits the fact that the matrix is selfadjoint, making it
* faster and more accurate than the general purpose eigenvalue algorithms
* implemented in EigenSolver and ComplexEigenSolver.
*
* Only the \b lower \b triangular \b part of the input matrix is referenced.
*
* Call the function compute() to compute the eigenvalues and eigenvectors of
* a given matrix. Alternatively, you can use the
* SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
* the eigenvalues and eigenvectors at construction time. Once the eigenvalue
* and eigenvectors are computed, they can be retrieved with the eigenvalues()
* and eigenvectors() functions.
*
* The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
* contains an example of the typical use of this class.
*
* To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
* the likes, see the class GeneralizedSelfAdjointEigenSolver.
*
* \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class SelfAdjointEigenSolver
{
public:
typedef _MatrixType MatrixType;
enum {
Size = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type \p _MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
/** \brief Real scalar type for \p _MatrixType.
*
* This is just \c Scalar if #Scalar is real (e.g., \c float or
* \c double), and the type of the real part of \c Scalar if #Scalar is
* complex.
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
*
* This is a column vector with entries of type #RealScalar.
* The length of the vector is the size of \p _MatrixType.
*/
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
/** \brief Default constructor for fixed-size matrices.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(). This constructor
* can only be used if \p _MatrixType is a fixed-size matrix; use
* SelfAdjointEigenSolver(Index) for dynamic-size matrices.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
*/
SelfAdjointEigenSolver()
: m_eivec(),
m_eivalues(),
m_subdiag(),
m_isInitialized(false)
{ }
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
*
* \param [in] size Positive integer, size of the matrix whose
* eigenvalues and eigenvectors will be computed.
*
* This constructor is useful for dynamic-size matrices, when the user
* intends to perform decompositions via compute(). The \p size
* parameter is only used as a hint. It is not an error to give a wrong
* \p size, but it may impair performance.
*
* \sa compute() for an example
*/
EIGEN_DEVICE_FUNC
explicit SelfAdjointEigenSolver(Index size)
: m_eivec(size, size),
m_eivalues(size),
m_subdiag(size > 1 ? size - 1 : 1),
m_isInitialized(false)
{}
/** \brief Constructor; computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
* be computed. Only the lower triangular part of the matrix is referenced.
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
*
* This constructor calls compute(const MatrixType&, int) to compute the
* eigenvalues of the matrix \p matrix. The eigenvectors are computed if
* \p options equals #ComputeEigenvectors.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
*
* \sa compute(const MatrixType&, int)
*/
template<typename InputType>
EIGEN_DEVICE_FUNC
explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols()),
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
m_isInitialized(false)
{
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
}
/** \brief Computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
* be computed. Only the lower triangular part of the matrix is referenced.
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of \p matrix. The eigenvalues()
* function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
* then the eigenvectors are also computed and can be retrieved by
* calling eigenvectors().
*
* This implementation uses a symmetric QR algorithm. The matrix is first
* reduced to tridiagonal form using the Tridiagonalization class. The
* tridiagonal matrix is then brought to diagonal form with implicit
* symmetric QR steps with Wilkinson shift. Details can be found in
* Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
*
* The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
* are required and \f$ 4n^3/3 \f$ if they are not required.
*
* This method reuses the memory in the SelfAdjointEigenSolver object that
* was allocated when the object was constructed, if the size of the
* matrix does not change.
*
* Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
*
* \sa SelfAdjointEigenSolver(const MatrixType&, int)
*/
template<typename InputType>
EIGEN_DEVICE_FUNC
SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
/** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
*
* This is a variant of compute(const MatrixType&, int options) which
* directly solves the underlying polynomial equation.
*
* Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
* This method is usually significantly faster than the QR iterative algorithm
* but it might also be less accurate. It is also worth noting that
* for 3x3 matrices it involves trigonometric operations which are
* not necessarily available for all scalar types.
*
* For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
* - double: 1e-8
* - float: 1e-3
SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
/**
*\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
*
* \param[in] diag The vector containing the diagonal of the matrix.
* \param[in] subdiag The subdiagonal of the matrix.
* \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
* \returns Reference to \c *this
*
* This function assumes that the matrix has been reduced to tridiagonal form.
*
* \sa compute(const MatrixType&, int) for more information
*/
SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
/** \brief Returns the eigenvectors of given matrix.
*
* \returns A const reference to the matrix whose columns are the eigenvectors.
*
* \pre The eigenvectors have been computed before.
*
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
* eigenvectors are normalized to have (Euclidean) norm equal to one. If
* this object was used to solve the eigenproblem for the selfadjoint
* matrix \f$ A \f$, then the matrix returned by this function is the
* matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
*
* Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
* Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
*
* \sa eigenvalues()
*/
const EigenvectorsType& eigenvectors() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
return m_eivec;
}
/** \brief Returns the eigenvalues of given matrix.
*
* \returns A const reference to the column vector containing the eigenvalues.
*
* \pre The eigenvalues have been computed before.
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
* are sorted in increasing order.
*
* Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
* Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
*
* \sa eigenvectors(), MatrixBase::eigenvalues()
*/
const RealVectorType& eigenvalues() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
return m_eivalues;
}
/** \brief Computes the positive-definite square root of the matrix.
*
* \returns the positive-definite square root of the matrix
*
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
* have been computed before.
*
* The square root of a positive-definite matrix \f$ A \f$ is the
* positive-definite matrix whose square equals \f$ A \f$. This function
* uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
* square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
*
* Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
* Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
*
* \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
MatrixType operatorSqrt() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
/** \brief Computes the inverse square root of the matrix.
*
* \returns the inverse positive-definite square root of the matrix
*
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
* have been computed before.
*
* This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
* compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
* cheaper than first computing the square root with operatorSqrt() and
* then its inverse with MatrixBase::inverse().
*
* Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
* Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
*
* \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
MatrixType operatorInverseSqrt() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
*/
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
return m_info;
}
/** \brief Maximum number of iterations.
*
* The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
* denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
*/
static const int m_maxIterations = 30;
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
EigenvectorsType m_eivec;
RealVectorType m_eivalues;
typename TridiagonalizationType::SubDiagonalType m_subdiag;
ComputationInfo m_info;
bool m_isInitialized;
bool m_eigenvectorsOk;
};
/** \internal
*
* \eigenvalues_module \ingroup Eigenvalues_Module
*
* Performs a QR step on a tridiagonal symmetric matrix represented as a
* pair of two vectors \a diag and \a subdiag.
*
* \param diag the diagonal part of the input selfadjoint tridiagonal matrix
* \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
* \param start starting index of the submatrix to work on
* \param end last+1 index of the submatrix to work on
* \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
* \param n size of the input matrix
*
* For compilation efficiency reasons, this procedure does not use eigen expression
* for its arguments.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
* "implicit symmetric QR step with Wilkinson shift"
*/
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
}
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::compute(const EigenBase<InputType>& a_matrix, int options)
using std::abs;
eigen_assert(matrix.cols() == matrix.rows());
eigen_assert((options&~(EigVecMask|GenEigMask))==0
&& (options&EigVecMask)!=EigVecMask
&& "invalid option parameter");
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
Index n = matrix.cols();
m_eivalues.resize(n,1);
if(n==1)
{
m_eivec = matrix;
m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
if(computeEigenvectors)
m_eivec.setOnes(n,n);
m_info = Success;
m_isInitialized = true;
m_eigenvectorsOk = computeEigenvectors;
return *this;
}
// declare some aliases
RealVectorType& diag = m_eivalues;
EigenvectorsType& mat = m_eivec;
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
mat = matrix.template triangularView<Lower>();
RealScalar scale = mat.cwiseAbs().maxCoeff();
if(scale==RealScalar(0)) scale = RealScalar(1);
mat.template triangularView<Lower>() /= scale;
m_subdiag.resize(n-1);
internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// scale back the eigen values
m_eivalues *= scale;
m_isInitialized = true;
m_eigenvectorsOk = computeEigenvectors;
return *this;
}
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
{
//TODO : Add an option to scale the values beforehand
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
m_eivalues = diag;
m_subdiag = subdiag;
if (computeEigenvectors)
{
m_eivec.setIdentity(diag.size(), diag.size());
}
m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
m_isInitialized = true;
m_eigenvectorsOk = computeEigenvectors;
return *this;
}
namespace internal {
/**
* \internal
* \brief Compute the eigendecomposition from a tridiagonal matrix
*
* \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
* \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
* \param[in] maxIterations : the maximum number of iterations
* \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
* \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
* \returns \c Success or \c NoConvergence
*/
template<typename MatrixType, typename DiagType, typename SubDiagType>
ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
{
using std::abs;
ComputationInfo info;
typedef typename MatrixType::Scalar Scalar;
Index n = diag.size();
Index end = n-1;
Index start = 0;
Index iter = 0; // total number of iterations
typedef typename DiagType::RealScalar RealScalar;
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon();
if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1])),precision) || abs(subdiag[i]) <= considerAsZero)
subdiag[i] = 0;
{
end--;
}
if (end<=0)
break;
// if we spent too many iterations, we give up
iter++;
internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
// Sort eigenvalues and corresponding vectors.
// TODO make the sort optional ?
// TODO use a better sort algorithm !!
}
template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
{
static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
{ eig.compute(A,options); }
};
template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
{
typedef typename SolverType::MatrixType MatrixType;
typedef typename SolverType::RealVectorType VectorType;
typedef typename SolverType::Scalar Scalar;
typedef typename SolverType::EigenvectorsType EigenvectorsType;
/** \internal
* Computes the roots of the characteristic polynomial of \a m.
* For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
*/
static inline void computeRoots(const MatrixType& m, VectorType& roots)
{
EIGEN_USING_STD_MATH(sqrt)
EIGEN_USING_STD_MATH(atan2)
EIGEN_USING_STD_MATH(cos)
EIGEN_USING_STD_MATH(sin)
const Scalar s_inv3 = Scalar(1)/Scalar(3);
const Scalar s_sqrt3 = sqrt(Scalar(3));
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
// eigenvalues are the roots to this equation, all guaranteed to be
// real-valued, because the matrix is symmetric.
Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
Scalar c2 = m(0,0) + m(1,1) + m(2,2);
// Construct the parameters used in classifying the roots of the equation
// and in solving the equation for the roots in closed form.
Scalar c2_over_3 = c2*s_inv3;
Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
// Compute the eigenvalues by solving for the roots of the polynomial.
Scalar rho = sqrt(a_over_3);
Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
Scalar cos_theta = cos(theta);
Scalar sin_theta = sin(theta);
// roots are already sorted, since cos is monotonically decreasing on [0, pi]
roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
}
static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
{
using std::abs;
Index i0;
// Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
mat.diagonal().cwiseAbs().maxCoeff(&i0);
// mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
// so let's save it:
representative = mat.col(i0);
Scalar n0, n1;
VectorType c0, c1;
n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
if(n0>n1) res = c0/std::sqrt(n0);
else res = c1/std::sqrt(n1);
return true;
}
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
static inline void run(SolverType& solver, const MatrixType& mat, int options)
{
eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
eigen_assert((options&~(EigVecMask|GenEigMask))==0
&& (options&EigVecMask)!=EigVecMask
&& "invalid option parameter");
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
EigenvectorsType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar shift = mat.trace() / Scalar(3);
// TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
MatrixType scaledMat = mat.template selfadjointView<Lower>();
scaledMat.diagonal().array() -= shift;
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
// compute the eigenvalues
computeRoots(scaledMat,eivals);
// compute the eigenvectors
if(computeEigenvectors)
{
if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
{
// All three eigenvalues are numerically the same
eivecs.setIdentity();
}
else
{
MatrixType tmp;
tmp = scaledMat;
// Compute the eigenvector of the most distinct eigenvalue
Scalar d0 = eivals(2) - eivals(1);
Scalar d1 = eivals(1) - eivals(0);
Index k(0), l(2);
if(d0 > d1)
{
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
d0 = d1;
}
// Compute the eigenvector of index k
{
tmp.diagonal().array () -= eivals(k);
// By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
}
// Compute eigenvector of index l
if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
{
// If d0 is too small, then the two other eigenvalues are numerically the same,
// and thus we only have to ortho-normalize the near orthogonal vector we saved above.
eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
eivecs.col(l).normalize();
}
else
{
tmp = scaledMat;
tmp.diagonal().array () -= eivals(l);
VectorType dummy;
extract_kernel(tmp, eivecs.col(l), dummy);
}
// Compute last eigenvector from the other two
eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
}
}
// Rescale back to the original size.
eivals *= scale;
eivals.array() += shift;
solver.m_info = Success;
solver.m_isInitialized = true;
solver.m_eigenvectorsOk = computeEigenvectors;
}
};
// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
template<typename SolverType>
struct direct_selfadjoint_eigenvalues<SolverType,2,false>
{
typedef typename SolverType::MatrixType MatrixType;
typedef typename SolverType::RealVectorType VectorType;
typedef typename SolverType::Scalar Scalar;
typedef typename SolverType::EigenvectorsType EigenvectorsType;
static inline void computeRoots(const MatrixType& m, VectorType& roots)
{
using std::sqrt;
const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
roots(0) = t1 - t0;
roots(1) = t1 + t0;
}
static inline void run(SolverType& solver, const MatrixType& mat, int options)
{
EIGEN_USING_STD_MATH(sqrt);
EIGEN_USING_STD_MATH(abs);
eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
eigen_assert((options&~(EigVecMask|GenEigMask))==0
&& (options&EigVecMask)!=EigVecMask
&& "invalid option parameter");
bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
EigenvectorsType& eivecs = solver.m_eivec;
VectorType& eivals = solver.m_eivalues;
// Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
Scalar shift = mat.trace() / Scalar(2);
MatrixType scaledMat = mat;
scaledMat.coeffRef(0,1) = mat.coeff(1,0);
scaledMat.diagonal().array() -= shift;
Scalar scale = scaledMat.cwiseAbs().maxCoeff();
if(scale > Scalar(0))
scaledMat /= scale;
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
// compute the eigen vectors
if(computeEigenvectors)
{
if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
{
eivecs.setIdentity();
}
else
{
scaledMat.diagonal().array () -= eivals(1);
Scalar a2 = numext::abs2(scaledMat(0,0));
Scalar c2 = numext::abs2(scaledMat(1,1));
Scalar b2 = numext::abs2(scaledMat(1,0));
if(a2>c2)
{
eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
eivecs.col(1) /= sqrt(a2+b2);
}
else
{
eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
eivecs.col(1) /= sqrt(c2+b2);
}
eivecs.col(0) << eivecs.col(1).unitOrthogonal();
}
}
solver.m_info = Success;
solver.m_isInitialized = true;
solver.m_eigenvectorsOk = computeEigenvectors;
}
};
}
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
::computeDirect(const MatrixType& matrix, int options)
{
internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
return *this;
}
namespace internal {
template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
EIGEN_DEVICE_FUNC
static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
{
using std::abs;
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
RealScalar e = subdiag[end-1];
// Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
// underflow thus leading to inf/NaN values when using the following commented code:
// RealScalar e2 = numext::abs2(subdiag[end-1]);
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
// This explain the following, somewhat more complicated, version:
RealScalar mu = diag[end];
mu -= abs(e);
else
{
RealScalar e2 = numext::abs2(subdiag[end-1]);
RealScalar h = numext::hypot(td,e);
if(e2==RealScalar(0)) mu -= (e / (td + (td>RealScalar(0) ? RealScalar(1) : RealScalar(-1)))) * (e / h);
else mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
}
RealScalar x = diag[start] - mu;
RealScalar z = subdiag[start];
for (Index k = start; k < end; ++k)
{
JacobiRotation<RealScalar> rot;
rot.makeGivens(x, z);
// do T = G' T G
RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
if (k > start)
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
x = subdiag[k];
if (k < end - 1)
{
z = -rot.s() * subdiag[k+1];
subdiag[k + 1] = rot.c() * subdiag[k+1];
}
// apply the givens rotation to the unit matrix Q = Q * G
if (matrixQ)
{
// FIXME if StorageOrder == RowMajor this operation is not very efficient
Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);