Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL
#include "StemFunction.h"
namespace Eigen {
/** \brief Scaling operator.
*
* This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
*/
template <typename RealScalar>
struct MatrixExponentialScalingOp
{
/** \brief Constructor.
*
* \param[in] squarings The integer \f$ s \f$ in this document.
*/
MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
/** \brief Scale a matrix coefficient.
*
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
*/
inline const RealScalar operator() (const RealScalar& x) const
{
using std::ldexp;
return ldexp(x, -m_squarings);
}
/** \brief Scale a matrix coefficient.
*
* \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
*/
inline const ComplexScalar operator() (const ComplexScalar& x) const
{
using std::ldexp;
return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
}
/** \brief Compute the (3,3)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
/** \brief Compute the (5,5)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
/** \brief Compute the (7,7)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
/** \brief Compute the (9,9)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
2162160.L, 110880.L, 3960.L, 90.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType A8 = A6 * A2;
const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
/** \brief Compute the (13,13)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
MatrixType tmp = A6 * V;
tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
V.noalias() = A6 * tmp;
V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
/** \brief Compute the (17,17)-Padé approximant to the exponential.
*
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
* This function activates only if your long double is double-double or quadruple.
*/
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
typedef typename MatA::PlainObject MatrixType;
typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
100610229646136770560000.L, 15720348382208870400000.L,
1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
46512.L, 306.L, 1.L};
const MatrixType A2 = A * A;
const MatrixType A4 = A2 * A2;
const MatrixType A6 = A4 * A2;
const MatrixType A8 = A4 * A4;
V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
MatrixType tmp = A8 * V;
tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
+ b[1] * MatrixType::Identity(A.rows(), A.cols());
U.noalias() = A * tmp;
tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
V.noalias() = tmp * A8;
V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
+ b[0] * MatrixType::Identity(A.rows(), A.cols());
template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
struct matrix_exp_computeUV
{
/** \brief Compute Padé approximant to the exponential.
*
* Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé
* approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
* denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings
* are chosen such that the approximation error is no more than the round-off error.
*/
static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
};
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
using std::frexp;
using std::pow;
const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
if (l1norm < 4.258730016922831e-001f) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 1.880152677804762e+000f) {
matrix_exp_pade5(arg, U, V);
} else {
const float maxnorm = 3.925724783138660f;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
matrix_exp_pade7(A, U, V);
}
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
using std::frexp;
using std::pow;
const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
if (l1norm < 1.495585217958292e-002) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 2.539398330063230e-001) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 9.504178996162932e-001) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.097847961257068e+000) {
matrix_exp_pade9(arg, U, V);
} else {
const double maxnorm = 5.371920351148152;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings));
matrix_exp_pade13(A, U, V);
}
template <typename ArgType>
static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
{
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
#else
using std::frexp;
using std::pow;
const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
squarings = 0;
#if LDBL_MANT_DIG <= 64 // extended precision
if (l1norm < 4.1968497232266989671e-003L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 1.1848116734693823091e-001L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 5.5170388480686700274e-001L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 1.3759868875587845383e+000L) {
matrix_exp_pade9(arg, U, V);
} else {
const long double maxnorm = 4.0246098906697353063L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade13(A, U, V);
}
if (l1norm < 3.2787892205607026992947488108213e-005L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 6.4467025060072760084130906076332e-003L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 6.8988028496595374751374122881143e-002L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.7339737518502231741495857201670e-001L) {
matrix_exp_pade9(arg, U, V);
} else if (l1norm < 1.3203382096514474905666448850278e+000L) {
matrix_exp_pade13(arg, U, V);
} else {
const long double maxnorm = 3.2579440895405400856599663723517L;
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade17(A, U, V);
}
if (l1norm < 1.639394610288918690547467954466970e-005L) {
matrix_exp_pade3(arg, U, V);
} else if (l1norm < 4.253237712165275566025884344433009e-003L) {
matrix_exp_pade5(arg, U, V);
} else if (l1norm < 5.125804063165764409885122032933142e-002L) {
matrix_exp_pade7(arg, U, V);
} else if (l1norm < 2.170000765161155195453205651889853e-001L) {
matrix_exp_pade9(arg, U, V);
} else if (l1norm < 1.125358383453143065081397882891878e+000L) {
matrix_exp_pade13(arg, U, V);
} else {
frexp(l1norm / maxnorm, &squarings);
if (squarings < 0) squarings = 0;
MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
matrix_exp_pade17(A, U, V);
}
// this case should be handled in compute()
eigen_assert(false && "Bug in MatrixExponential");
#endif
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
}
};
/* Computes the matrix exponential
*
* \param arg argument of matrix exponential (should be plain object)
* \param result variable in which result will be stored
*/
template <typename ArgType, typename ResultType>
void matrix_exp_compute(const ArgType& arg, ResultType &result)
{
typedef typename ArgType::PlainObject MatrixType;
#if LDBL_MANT_DIG > 112 // rarely happens
typedef typename traits<MatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename std::complex<RealScalar> ComplexScalar;
if (sizeof(RealScalar) > 14) {
result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
return;
}
#endif
MatrixType U, V;
int squarings;
matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
MatrixType numer = U + V;
MatrixType denom = -U + V;
result = denom.partialPivLu().solve(numer);
for (int i=0; i<squarings; i++)
result *= result; // undo scaling by repeated squaring
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix exponential of some matrix (expression).
*
* \tparam Derived Type of the argument to the matrix exponential.
*
* This class holds the argument to the matrix exponential until it is assigned or evaluated for
* some other reason (so the argument should not be changed in the meantime). It is the return type
* of MatrixBase::exp() and most of the time this is the only way it is used.
*/
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::Index Index;
public:
/** \brief Constructor.
*
* \param src %Matrix (expression) forming the argument of the matrix exponential.
*/
MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
/** \brief Compute the matrix exponential.
*
* \param result the matrix exponential of \p src in the constructor.
*/
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
internal::matrix_exp_compute(tmp, result);
}
Index rows() const { return m_src.rows(); }
Index cols() const { return m_src.cols(); }
protected:
const typename internal::ref_selector<Derived>::type m_src;
};
namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
}
template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
eigen_assert(rows() == cols());
return MatrixExponentialReturnValue<Derived>(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIX_EXPONENTIAL