Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GMRES_H
#define EIGEN_GMRES_H
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
* Generalized Minimal Residual Algorithm based on the
* Arnoldi algorithm implemented with Householder reflections.
*
* Parameters:
* \param mat matrix of linear system of equations
* \param Rhs right hand side vector of linear system of equations
* \param x on input: initial guess, on output: solution
* \param precond preconditioner used
* \param iters on input: maximum number of iterations to perform
* on output: number of iterations performed
* \param restart number of iterations for a restart
* \param tol_error on input: relative residual tolerance
* on output: residuum achieved
*
* \sa IterativeMethods::bicgstab()
*
*
* For references, please see:
*
* Saad, Y. and Schultz, M. H.
* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
*
* Saad, Y.
* Iterative Methods for Sparse Linear Systems.
* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
*
* Walker, H. F.
* Implementations of the GMRES method.
* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
*
* Walker, H. F.
* Implementation of the GMRES Method using Householder Transformations.
* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
*
*/
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar;
typedef Matrix < Scalar, Dynamic, 1 > VectorType;
typedef Matrix < Scalar, Dynamic, Dynamic, ColMajor> FMatrixType;
RealScalar tol = tol_error;
const Index maxIters = iters;
iters = 0;
// residual and preconditioned residual
VectorType p0 = rhs - mat*x;
VectorType r0 = precond.solve(p0);
// is initial guess already good enough?
if(r0Norm == 0)
{
tol_error = 0;
return true;
}
// storage for Hessenberg matrix and Householder data
FMatrixType H = FMatrixType::Zero(m, restart + 1);
VectorType w = VectorType::Zero(restart + 1);
VectorType tau = VectorType::Zero(restart + 1);
// storage for Jacobi rotations
std::vector < JacobiRotation < Scalar > > G(restart);
// storage for temporaries
VectorType t(m), v(m), workspace(m), x_new(m);
// generate first Householder vector
Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
RealScalar beta;
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
w(0) = Scalar(beta);
for (Index k = 1; k <= restart; ++k)
{
++iters;
// apply Householder reflections H_{1} ... H_{k-1} to v
// TODO: use a HouseholderSequence
for (Index i = k - 1; i >= 0; --i) {
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
// apply matrix M to v: v = mat * v;
t.noalias() = mat * v;
v = precond.solve(t);
// apply Householder reflections H_{k-1} ... H_{1} to v
// TODO: use a HouseholderSequence
for (Index i = 0; i < k; ++i) {
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
if (v.tail(m - k).norm() != 0.0)
{
if (k <= restart)
{
// generate new Householder vector
Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
// apply Householder reflection H_{k} to v
v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
}
}
if (k > 1)
{
for (Index i = 0; i < k - 1; ++i)
{
// apply old Givens rotations to v
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
}
}
if (k<m && v(k) != (Scalar) 0)
{
// determine next Givens rotation
G[k - 1].makeGivens(v(k - 1), v(k));
// apply Givens rotation to v and w
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
}
// insert coefficients into upper matrix triangle
H.col(k-1).head(k) = v.head(k);
tol_error = abs(w(k)) / r0Norm;
bool stop = (k==m || tol_error < tol || iters == maxIters);
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
if (stop || k == restart)
{
// solve upper triangular system
Ref<VectorType> y = w.head(k);
H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
// use Horner-like scheme to calculate solution vector
x_new.setZero();
for (Index i = k - 1; i >= 0; --i)
{
x_new(i) += y(i);
// apply Householder reflection H_{i} to x_new
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
x += x_new;
if(stop)
{
return true;
}
else
{
k=0;
// reset data for restart
p0.noalias() = rhs - mat*x;
r0 = precond.solve(p0);
// clear Hessenberg matrix and Householder data
H.setZero();
w.setZero();
tau.setZero();
// generate first Householder vector
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
w(0) = Scalar(beta);
}
}
}
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
}
}
template< typename _MatrixType,
typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class GMRES;
namespace internal {
template< typename _MatrixType, typename _Preconditioner>
struct traits<GMRES<_MatrixType,_Preconditioner> >
{
typedef _MatrixType MatrixType;
typedef _Preconditioner Preconditioner;
};
}
/** \ingroup IterativeLinearSolvers_Module
* \brief A GMRES solver for sparse square problems
*
* This class allows to solve for A.x = b sparse linear problems using a generalized minimal
* residual method. The vectors x and b can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
* \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
*
* The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
* and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
* and NumTraits<Scalar>::epsilon() for the tolerance.
* This class can be used as the direct solver classes. Here is a typical usage example:
* \code
* int n = 10000;
* VectorXd x(n), b(n);
* SparseMatrix<double> A(n,n);
* // fill A and b
* GMRES<SparseMatrix<double> > solver(A);
* x = solver.solve(b);
* std::cout << "#iterations: " << solver.iterations() << std::endl;
* std::cout << "estimated error: " << solver.error() << std::endl;
* // update b, and solve again
* x = solver.solve(b);
* \endcode
* By default the iterations start with x=0 as an initial guess of the solution.
* One can control the start using the solveWithGuess() method.
*
* GMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename _MatrixType, typename _Preconditioner>
class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
{
typedef IterativeSolverBase<GMRES> Base;
using Base::m_error;
using Base::m_iterations;
using Base::m_info;
using Base::m_isInitialized;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef _Preconditioner Preconditioner;
public:
/** Default constructor. */
GMRES() : Base(), m_restart(30) {}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
~GMRES() {}
/** Get the number of iterations after that a restart is performed.
*/
/** Set the number of iterations after that a restart is performed.
* \param restart number of iterations for a restarti, default is 30.
*/
void set_restart(const Index restart) { m_restart=restart; }
void _solve_with_guess_impl(const Rhs& b, Dest& x) const
{
{
m_iterations = Base::maxIterations();
m_error = Base::m_tolerance;
if(!internal::gmres(matrix(), b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
: m_error <= Base::m_tolerance ? Success
: NoConvergence;
m_isInitialized = true;
}
/** \internal */
template<typename Rhs,typename Dest>
{
x = b;
if(x.squaredNorm() == 0) return; // Check Zero right hand side