Skip to content
svd_common.h 17.8 KiB
Newer Older
Luker's avatar
Luker committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif

#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif

#include "svd_fill.h"

// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template<typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd)
{
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;

  MatrixType sigma = MatrixType::Zero(rows,cols);
  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
  MatrixUType u = svd.matrixU();
  MatrixVType v = svd.matrixV();
  RealScalar scaling = m.cwiseAbs().maxCoeff();
  if(scaling<(std::numeric_limits<RealScalar>::min)())
  {
    VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
  }
  else
  {
    VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
  }
  VERIFY_IS_UNITARY(u);
  VERIFY_IS_UNITARY(v);
}

// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template<typename SvdType, typename MatrixType>
void svd_compare_to_full(const MatrixType& m,
                         unsigned int computationOptions,
                         const SvdType& referenceSvd)
{
  typedef typename MatrixType::RealScalar RealScalar;
  Index rows = m.rows();
  Index cols = m.cols();
  Index diagSize = (std::min)(rows, cols);
  RealScalar prec = test_precision<RealScalar>();

  SvdType svd(m, computationOptions);

  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
  
  if(computationOptions & (ComputeFullV|ComputeThinV))
  {
    VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
    VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
                      referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
  }
  
  if(computationOptions & (ComputeFullU|ComputeThinU))
  {
    VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
    VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
                      referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
  }
  
  // The following checks are not critical.
  // For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt then different matrix-matrix product implementation will be used
  // and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
  ++g_test_level;
  if(computationOptions & ComputeFullU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
  if(computationOptions & ComputeThinU)  VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
  if(computationOptions & ComputeFullV)  VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
  if(computationOptions & ComputeThinV)  VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
  --g_test_level;
}

//
template<typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
  SvdType svd(m, computationOptions);

       if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
  else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(2e-4);

  SolutionType x = svd.solve(rhs);
   
  RealScalar residual = (m*x-rhs).norm();
  RealScalar rhs_norm = rhs.norm();
  if(!test_isMuchSmallerThan(residual,rhs.norm()))
  {
    // ^^^ If the residual is very small, then we have an exact solution, so we are already good.
    
    // evaluate normal equation which works also for least-squares solutions
    if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
    {
      using std::sqrt;
      // This test is not stable with single precision.
      // This is probably because squaring m signicantly affects the precision.      
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      
      VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
      
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
    }
    
    // Check that there is no significantly better solution in the neighborhood of x
    for(Index k=0;k<x.rows();++k)
    {
      using std::abs;
      
      SolutionType y(x);
      y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
      RealScalar residual_y = (m*y-rhs).norm();
      VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
      
      y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
      residual_y = (m*y-rhs).norm();
      VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) ++g_test_level;
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      if(internal::is_same<RealScalar,float>::value) --g_test_level;
    }
  }
}

// check minimal norm solutions, the inoput matrix m is only used to recover problem size
template<typename MatrixType>
void svd_min_norm(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  Index cols = m.cols();

  enum {
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  // generate a full-rank m x n problem with m<n
  enum {
    RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
    RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
  };
  typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
  typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
  typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
  Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
  MatrixType2 m2(rank,cols);
  int guard = 0;
  do {
    m2.setRandom();
  } while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
  VERIFY(guard<10);

  RhsType2 rhs2 = RhsType2::Random(rank);
  // use QR to find a reference minimal norm solution
  HouseholderQR<MatrixType2T> qr(m2.adjoint());
  Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
  tmp.conservativeResize(cols);
  tmp.tail(cols-rank).setZero();
  SolutionType x21 = qr.householderQ() * tmp;
  // now check with SVD
  SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
  SolutionType x22 = svd2.solve(rhs2);
  VERIFY_IS_APPROX(m2*x21, rhs2);
  VERIFY_IS_APPROX(m2*x22, rhs2);
  VERIFY_IS_APPROX(x21, x22);

  // Now check with a rank deficient matrix
  typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
  typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
  Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
  Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
  MatrixType3 m3 = C * m2;
  RhsType3 rhs3 = C * rhs2;
  SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
  SolutionType x3 = svd3.solve(rhs3);
  VERIFY_IS_APPROX(m3*x3, rhs3);
  VERIFY_IS_APPROX(m3*x21, rhs3);
  VERIFY_IS_APPROX(m2*x3, rhs2);
  VERIFY_IS_APPROX(x21, x3);
}

// Check full, compare_to_full, least_square, and min_norm for all possible compute-options
template<typename SvdType, typename MatrixType>
void svd_test_all_computation_options(const MatrixType& m, bool full_only)
{
//   if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
//     return;
  SvdType fullSvd(m, ComputeFullU|ComputeFullV);
  CALL_SUBTEST(( svd_check_full(m, fullSvd) ));
  CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV) ));
  CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeFullV) ));
  
  #if defined __INTEL_COMPILER
  // remark #111: statement is unreachable
  #pragma warning disable 111
  #endif
  if(full_only)
    return;

  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU, fullSvd) ));
  CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullV, fullSvd) ));
  CALL_SUBTEST(( svd_compare_to_full(m, 0, fullSvd) ));

  if (MatrixType::ColsAtCompileTime == Dynamic) {
    // thin U/V are only available with dynamic number of columns
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m,              ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU             , fullSvd) ));
    CALL_SUBTEST(( svd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
    
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV) ));

    CALL_SUBTEST(( svd_min_norm(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( svd_min_norm(m, ComputeThinU | ComputeThinV) ));

    // test reconstruction
    typedef typename MatrixType::Index Index;
    Index diagSize = (std::min)(m.rows(), m.cols());
    SvdType svd(m, ComputeThinU | ComputeThinV);
    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
  }
}


// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }

// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }

// all this function does is verify we don't iterate infinitely on nan/inf values
template<typename SvdType, typename MatrixType>
void svd_inf_nan()
{
  SvdType svd;
  typedef typename MatrixType::Scalar Scalar;
  Scalar some_inf = Scalar(1) / zero<Scalar>();
  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);

  Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
  VERIFY(nan != nan);
  svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);

  MatrixType m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
  svd.compute(m, ComputeFullU | ComputeFullV);

  m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
  svd.compute(m, ComputeFullU | ComputeFullV);
  
  // regression test for bug 791
  m.resize(3,3);
  m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
       0,   -0.5,                             0,
       nan,  0,                               0;
  svd.compute(m, ComputeFullU | ComputeFullV);
  
  m.resize(4,4);
  m <<  1, 0, 0, 0,
        0, 3, 1, 2e-308,
        1, 0, 1, nan,
        0, nan, nan, 0;
  svd.compute(m, ComputeFullU | ComputeFullV);
}

// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template<typename>
void svd_underoverflow()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
  Matrix2d M;
  M << -7.90884e-313, -4.94e-324,
                 0, 5.60844e-313;
  SVD_DEFAULT(Matrix2d) svd;
  svd.compute(M,ComputeFullU|ComputeFullV);
  CALL_SUBTEST( svd_check_full(M,svd) );
  
  // Check all 2x2 matrices made with the following coefficients:
  VectorXd value_set(9);
  value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
  Array4i id(0,0,0,0);
  int k = 0;
  do
  {
    M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    svd.compute(M,ComputeFullU|ComputeFullV);
    CALL_SUBTEST( svd_check_full(M,svd) );

    id(k)++;
    if(id(k)>=value_set.size())
    {
      while(k<3 && id(k)>=value_set.size()) id(++k)++;
      id.head(k).setZero();
      k=0;
    }

  } while((id<int(value_set.size())).all());
  
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
  
  // Check for overflow:
  Matrix3d M3;
  M3 << 4.4331978442502944e+307, -5.8585363752028680e+307,  6.4527017443412964e+307,
        3.7841695601406358e+307,  2.4331702789740617e+306, -3.5235707140272905e+307,
       -8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;

  SVD_DEFAULT(Matrix3d) svd3;
  svd3.compute(M3,ComputeFullU|ComputeFullV); // just check we don't loop indefinitely
  CALL_SUBTEST( svd_check_full(M3,svd3) );
}

// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)

template<typename MatrixType>
void svd_all_trivial_2x2( void (*cb)(const MatrixType&,bool) )
{
  MatrixType M;
  VectorXd value_set(3);
  value_set << 0, 1, -1;
  Array4i id(0,0,0,0);
  int k = 0;
  do
  {
    M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
    
    cb(M,false);
    
    id(k)++;
    if(id(k)>=value_set.size())
    {
      while(k<3 && id(k)>=value_set.size()) id(++k)++;
      id.head(k).setZero();
      k=0;
    }
    
  } while((id<int(value_set.size())).all());
}

template<typename>
void svd_preallocate()
{
  Vector3f v(3.f, 2.f, 1.f);
  MatrixXf m = v.asDiagonal();

  internal::set_is_malloc_allowed(false);
  VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
  SVD_DEFAULT(MatrixXf) svd;
  internal::set_is_malloc_allowed(true);
  svd.compute(m);
  VERIFY_IS_APPROX(svd.singularValues(), v);

  SVD_DEFAULT(MatrixXf) svd2(3,3);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_RAISES_ASSERT(svd2.matrixU());
  VERIFY_RAISES_ASSERT(svd2.matrixV());
  svd2.compute(m, ComputeFullU | ComputeFullV);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);

  SVD_DEFAULT(MatrixXf) svd3(3,3,ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m, ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(true);
}

template<typename SvdType,typename MatrixType> 
void svd_verify_assert(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
  RhsType rhs(rows);
  SvdType svd;
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.singularValues())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  VERIFY_RAISES_ASSERT(svd.solve(rhs))
  MatrixType a = MatrixType::Zero(rows, cols);
  a.setZero();
  svd.compute(a, 0);
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  svd.singularValues();
  VERIFY_RAISES_ASSERT(svd.solve(rhs))
    
  if (ColsAtCompileTime == Dynamic)
  {
    svd.compute(a, ComputeThinU);
    svd.matrixU();
    VERIFY_RAISES_ASSERT(svd.matrixV())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))
    svd.compute(a, ComputeThinV);
    svd.matrixV();
    VERIFY_RAISES_ASSERT(svd.matrixU())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))
  }
  else
  {
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
  }
}

#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM