Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
template<typename Index, typename Scalar, int StorageOrder, bool ConjugateLhs, bool ConjugateRhs>
struct general_matrix_vector_product_wrapper
static void run(Index rows, Index cols,const Scalar *lhs, Index lhsStride, const Scalar *rhs, Index rhsIncr, Scalar* res, Index resIncr, Scalar alpha)
typedef internal::const_blas_data_mapper<Scalar,Index,StorageOrder> LhsMapper;
typedef internal::const_blas_data_mapper<Scalar,Index,RowMajor> RhsMapper;
internal::general_matrix_vector_product
<Index,Scalar,LhsMapper,StorageOrder,ConjugateLhs,Scalar,RhsMapper,ConjugateRhs>::run(
rows, cols, LhsMapper(lhs, lhsStride), RhsMapper(rhs, rhsIncr), res, resIncr, alpha);
int EIGEN_BLAS_FUNC(gemv)(const char *opa, const int *m, const int *n, const RealScalar *palpha,
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *incb, const RealScalar *pbeta, RealScalar *pc, const int *incc)
{
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
static const functype func[4] = {
// array index: NOTR
(general_matrix_vector_product_wrapper<int,Scalar,ColMajor,false,false>::run),
// array index: TR
(general_matrix_vector_product_wrapper<int,Scalar,RowMajor,false,false>::run),
// array index: ADJ
(general_matrix_vector_product_wrapper<int,Scalar,RowMajor,Conj ,false>::run),
0
};
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
// check arguments
int info = 0;
if(OP(*opa)==INVALID) info = 1;
else if(*m<0) info = 2;
else if(*n<0) info = 3;
else if(*lda<std::max(1,*m)) info = 6;
else if(*incb==0) info = 8;
else if(*incc==0) info = 11;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
return 0;
int actual_m = *m;
int actual_n = *n;
int code = OP(*opa);
if(code!=NOTR)
std::swap(actual_m,actual_n);
const Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) make_vector(actual_c, actual_m).setZero();
else make_vector(actual_c, actual_m) *= beta;
}
if(code>=4 || func[code]==0)
return 0;
func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
if(actual_b!=b) delete[] actual_b;
if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
return 1;
}
int EIGEN_BLAS_FUNC(trsv)(const char *uplo, const char *opa, const char *diag, const int *n, const RealScalar *pa, const int *lda, RealScalar *pb, const int *incb)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
static const functype func[16] = {
// array index: NOTR | (UP << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run),
// array index: TR | (UP << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run),
// array index: TR | (LO << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (NUNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run),
0,
// array index: NOTR | (UP << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run),
// array index: TR | (UP << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run),
// array index: TR | (LO << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (UNIT << 3)
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run),
0
};
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
Scalar* b = reinterpret_cast<Scalar*>(pb);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*opa)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*lda<std::max(1,*n)) info = 6;
else if(*incb==0) info = 8;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
Scalar* actual_b = get_compact_vector(b,*n,*incb);
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
func[code](*n, a, *lda, actual_b);
if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
return 0;
}
int EIGEN_BLAS_FUNC(trmv)(const char *uplo, const char *opa, const char *diag, const int *n, const RealScalar *pa, const int *lda, RealScalar *pb, const int *incb)
{
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&);
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
static const functype func[16] = {
// array index: NOTR | (UP << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (UP << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (LO << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (NUNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (UP << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (UP << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (LO << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (UNIT << 3)
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
0
};
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
Scalar* b = reinterpret_cast<Scalar*>(pb);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*opa)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*lda<std::max(1,*n)) info = 6;
else if(*incb==0) info = 8;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
if(*n==0)
return 1;
Scalar* actual_b = get_compact_vector(b,*n,*incb);
Matrix<Scalar,Dynamic,1> res(*n);
res.setZero();
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
if(code>=16 || func[code]==0)
return 0;
func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
copy_back(res.data(),b,*n,*incb);
if(actual_b!=b) delete[] actual_b;
return 1;
}
/** GBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*/
int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
const Scalar* x = reinterpret_cast<const Scalar*>(px);
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
int info = 0;
if(OP(*trans)==INVALID) info = 1;
else if(*m<0) info = 2;
else if(*n<0) info = 3;
else if(*kl<0) info = 4;
else if(*ku<0) info = 5;
else if(*lda<coeff_rows) info = 8;
else if(*incx==0) info = 10;
else if(*incy==0) info = 13;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
return 0;
int actual_m = *m;
int actual_n = *n;
if(OP(*trans)!=NOTR)
std::swap(actual_m,actual_n);
const Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
if(beta==Scalar(0)) make_vector(actual_y, actual_m).setZero();
else make_vector(actual_y, actual_m) *= beta;
int nb = std::min(*n,(*m)+(*ku));
for(int j=0; j<nb; ++j)
{
int start = std::max(0,j - *ku);
int end = std::min((*m)-1,j + *kl);
int len = end - start + 1;
int offset = (*ku) - j + start;
if(OP(*trans)==NOTR)
make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value();
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * make_vector(actual_x+start,len) ).value();
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
return 0;
}
#if 0
/** TBMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x,
*
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
*/
int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
int coeff_rows = *k + 1;
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*opa)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*k<0) info = 5;
else if(*lda<coeff_rows) info = 7;
else if(*incx==0) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
int ku = UPLO(*uplo)==UPPER ? *k : 0;
int kl = UPLO(*uplo)==LOWER ? *k : 0;
for(int j=0; j<*n; ++j)
{
int start = std::max(0,j - ku);
int end = std::min((*m)-1,j + kl);
int len = end - start + 1;
int offset = (ku) - j + start;
make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value();
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * make_vector(actual_x+start,len) ).value();
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
return 0;
}
#endif
/** DTBSV solves one of the systems of equations
*
* A*x = b, or A'*x = b,
*
* where b and x are n element vectors and A is an n by n unit, or
* non-unit, upper or lower triangular band matrix, with ( k + 1 )
* diagonals.
*
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
{
typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
static const functype func[16] = {
// array index: NOTR | (UP << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run),
// array index: TR | (UP << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run),
// array index: ADJ | (UP << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run),
// array index: TR | (LO << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run),
// array index: ADJ | (LO << 2) | (NUNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run),
0,
// array index: NOTR | (UP << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run),
// array index: TR | (UP << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run),
// array index: ADJ | (UP << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run),
// array index: TR | (LO << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run),
// array index: ADJ | (LO << 2) | (UNIT << 3)
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run),
0,
};
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
int coeff_rows = *k+1;
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*op)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*k<0) info = 5;
else if(*lda<coeff_rows) info = 7;
else if(*incx==0) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
if(code>=16 || func[code]==0)
return 0;
func[code](*n, *k, a, *lda, actual_x);
return 0;
}
/** DTPMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x,
*
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
{
typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar);
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
static const functype func[16] = {
// array index: NOTR | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
// array index: TR | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
0
};
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
Scalar* ap = reinterpret_cast<Scalar*>(pap);
Scalar* x = reinterpret_cast<Scalar*>(px);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*opa)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*incx==0) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6);
if(*n==0)
return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Matrix<Scalar,Dynamic,1> res(*n);
res.setZero();
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
if(code>=16 || func[code]==0)
return 0;
func[code](*n, ap, actual_x, res.data(), Scalar(1));
copy_back(res.data(),x,*n,*incx);
if(actual_x!=x) delete[] actual_x;
return 1;
}
/** DTPSV solves one of the systems of equations
*
* A*x = b, or A'*x = b,
*
* where b and x are n element vectors and A is an n by n unit, or
* non-unit, upper or lower triangular matrix, supplied in packed form.
*
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
{
typedef void (*functype)(int, const Scalar*, Scalar*);
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
static const functype func[16] = {
// array index: NOTR | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run),
// array index: TR | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run),
// array index: TR | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (NUNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run),
0,
// array index: NOTR | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run),
// array index: TR | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run),
// array index: ADJ | (UP << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run),
0,
// array index: NOTR | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run),
// array index: TR | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run),
// array index: ADJ | (LO << 2) | (UNIT << 3)
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run),
0
};
Scalar* ap = reinterpret_cast<Scalar*>(pap);
Scalar* x = reinterpret_cast<Scalar*>(px);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*opa)==INVALID) info = 2;
else if(DIAG(*diag)==INVALID) info = 3;
else if(*n<0) info = 4;
else if(*incx==0) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6);
Scalar* actual_x = get_compact_vector(x,*n,*incx);
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
func[code](*n, ap, actual_x);
if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx);
return 1;
}