Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLAS_COMMON_H
#define EIGEN_BLAS_COMMON_H
#include <complex>
#ifndef SCALAR
#error the token SCALAR must be defined to compile this file
#endif
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#define NOTR 0
#define TR 1
#define ADJ 2
#define LEFT 0
#define RIGHT 1
#define UP 0
#define LO 1
#define NUNIT 0
#define UNIT 1
#define INVALID 0xff
#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
: ((X)=='T' || (X)=='t') ? TR \
: ((X)=='C' || (X)=='c') ? ADJ \
: INVALID)
#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
: ((X)=='R' || (X)=='r') ? RIGHT \
: INVALID)
#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
: ((X)=='L' || (X)=='l') ? LO \
: INVALID)
#define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \
: ((X)=='U' || (X)=='u') ? UNIT \
: INVALID)
inline bool check_op(const char* op)
{
return OP(*op)!=0xff;
}
inline bool check_side(const char* side)
{
return SIDE(*side)!=0xff;
}
inline bool check_uplo(const char* uplo)
{
return UPLO(*uplo)!=0xff;
}
namespace Eigen {
#include "BandTriangularSolver.h"
#include "GeneralRank1Update.h"
#include "PackedSelfadjointProduct.h"
#include "PackedTriangularMatrixVector.h"
#include "PackedTriangularSolverVector.h"
#include "Rank2Update.h"
}
using namespace Eigen;
typedef SCALAR Scalar;
typedef NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
enum
{
IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
Conj = IsComplex
};
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
typedef Map<const Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > ConstMatrixType;
typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
template<typename T>
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T* data, int rows, int cols, int stride)
{
return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(const T* data, int rows, int cols, int stride)
{
return Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(T* data, int size, int incr)
{
return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(const T* data, int size, int incr)
{
return Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<Matrix<T,Dynamic,1> > make_vector(T* data, int size)
template<typename T>
Map<const Matrix<T,Dynamic,1> > make_vector(const T* data, int size)
{
return Map<const Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
T* get_compact_vector(T* x, int n, int incx)
{
if(incx==1)
return x;
typename Eigen::internal::remove_const<T>::type* ret = new Scalar[n];
if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse();
else make_vector(ret,n) = make_vector(x,n, incx);
return ret;
}
template<typename T>
T* copy_back(T* x_cpy, T* x, int n, int incx)
{
if(x_cpy==x)
return 0;
if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n);
else make_vector(x,n, incx) = make_vector(x_cpy,n);