Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMFPACKSUPPORT_H
#define EIGEN_UMFPACKSUPPORT_H
/* TODO extract L, extract U, compute det, etc... */
// generic double/complex<double> wrapper functions:
inline void umfpack_defaults(double control[UMFPACK_CONTROL], double)
{ umfpack_di_defaults(control); }
inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>)
{ umfpack_zi_defaults(control); }
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double)
{ umfpack_di_report_info(control, info);}
inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>)
{ umfpack_zi_report_info(control, info);}
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double)
{ umfpack_di_report_status(control, status);}
inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>)
{ umfpack_zi_report_status(control, status);}
inline void umfpack_report_control(double control[UMFPACK_CONTROL], double)
{ umfpack_di_report_control(control);}
inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>)
{ umfpack_zi_report_control(control);}
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
inline void umfpack_free_numeric(void **Numeric, double)
{ umfpack_di_free_numeric(Numeric); *Numeric = 0; }
inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
inline void umfpack_free_symbolic(void **Symbolic, double)
{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
inline int umfpack_symbolic(int n_row,int n_col,
const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
}
inline int umfpack_symbolic(int n_row,int n_col,
const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{
return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
}
inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
}
inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
void *Symbolic, void **Numeric,
const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
{
return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
}
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
double X[], const double B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
}
inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
std::complex<double> X[], const std::complex<double> B[], void *Numeric,
const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
{
return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
}
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
{
return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}
inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
{
return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
}
inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
{
return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
}
inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
{
double& lx0_real = numext::real_ref(Lx[0]);
double& ux0_real = numext::real_ref(Ux[0]);
double& dx0_real = numext::real_ref(Dx[0]);
return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
}
inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
}
inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
{
double& mx_real = numext::real_ref(*Mx);
return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
}
/** \ingroup UmfPackSupport_Module
* \brief A sparse LU factorization and solver based on UmfPack
*
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the UmfPack library. The sparse matrix A must be squared and full rank.
* The vectors or matrices X and B can be either dense or sparse.
*
* \warning The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \implsparsesolverconcept
*
* \sa \ref TutorialSparseSolverConcept, class SparseLU
class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
protected:
typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
using Base::m_isInitialized;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar> LUMatrixType;
typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef;
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo;
UmfPackLU()
: m_dummy(0,0), mp_matrix(m_dummy)
{
init();
}
explicit UmfPackLU(const InputMatrixType& matrix)
: mp_matrix(matrix)
{
init();
compute(matrix);
}
~UmfPackLU()
{
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
}
inline Index rows() const { return mp_matrix.rows(); }
inline Index cols() const { return mp_matrix.cols(); }
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
inline const LUMatrixType& matrixL() const
{
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const LUMatrixType& matrixU() const
{
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType& permutationP() const
{
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType& permutationQ() const
{
if (m_extractedDataAreDirty) extractData();
return m_q;
}
/** Computes the sparse Cholesky decomposition of \a matrix
* Note that the matrix should be column-major, and in compressed format for best performance.
* \sa SparseMatrix::makeCompressed().
*/
template<typename InputMatrixType>
void compute(const InputMatrixType& matrix)
{
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
/** Performs a symbolic decomposition on the sparcity of \a matrix.
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize(), compute()
template<typename InputMatrixType>
void analyzePattern(const InputMatrixType& matrix)
if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar());
grab(matrix.derived());
analyzePattern_impl();
/** Provides the return status code returned by UmfPack during the numeric
* factorization.
eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()");
return m_fact_errorCode;
/** Provides access to the control settings array used by UmfPack.
* If this array contains NaN's, the default values are used.
/** Provides access to the control settings array used by UmfPack.
*
* If this array contains NaN's, the default values are used.
*
* See UMFPACK documentation for details.
*/
inline UmfpackControl& umfpackControl()
{
return m_control;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
*
* \sa analyzePattern(), compute()
*/
template<typename InputMatrixType>
void factorize(const InputMatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
if(m_numeric)
umfpack_free_numeric(&m_numeric,Scalar());
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/** Prints the current UmfPack control settings.
*
* \sa umfpackControl()
*/
void umfpackReportControl()
{
umfpack_report_control(m_control.data(), Scalar());
}
/** Prints statistics collected by UmfPack.
*
* \sa analyzePattern(), compute()
*/
void umfpackReportInfo()
{
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar());
}
/** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization).
*
* \sa analyzePattern(), compute()
*/
void umfpackReportStatus() {
eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar());
}
/** \internal */
template<typename BDerived,typename XDerived>
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
Scalar determinant() const;
void extractData() const;
protected:
void init()
{
m_info = InvalidInput;
m_isInitialized = false;
m_numeric = 0;
m_symbolic = 0;
m_extractedDataAreDirty = true;
m_fact_errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()),
internal::convert_index<int>(mp_matrix.cols()),
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
&m_symbolic, m_control.data(), m_umfpackInfo.data());
m_analysisIsOk = true;
m_factorizationIsOk = false;
m_extractedDataAreDirty = true;
}
m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data());
m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
m_factorizationIsOk = true;
m_extractedDataAreDirty = true;
}
template<typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A)
{
mp_matrix.~UmfpackMatrixRef();
::new (&mp_matrix) UmfpackMatrixRef(A.derived());
}
void grab(const UmfpackMatrixRef &A)
{
if(&(A.derived()) != &mp_matrix)
{
mp_matrix.~UmfpackMatrixRef();
::new (&mp_matrix) UmfpackMatrixRef(A);
}
}
// cached data to reduce reallocation, etc.
mutable LUMatrixType m_l;
int m_fact_errorCode;
UmfpackControl m_control;
mutable UmfpackInfo m_umfpackInfo;
mutable LUMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
UmfpackMatrixType m_dummy;
UmfpackMatrixRef mp_matrix;
void* m_numeric;
void* m_symbolic;
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
mutable bool m_extractedDataAreDirty;
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
};
template<typename MatrixType>
void UmfPackLU<MatrixType>::extractData() const
{
if (m_extractedDataAreDirty)
{
// get size of the data
int lnz, unz, rows, cols, nz_udiag;
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
// allocate data
m_l.resize(rows,(std::min)(rows,cols));
m_l.resizeNonZeros(lnz);
m_u.resize((std::min)(rows,cols),cols);
m_u.resizeNonZeros(unz);
m_p.resize(rows);
m_q.resize(cols);
// extract
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
m_extractedDataAreDirty = false;
}
}
template<typename MatrixType>
typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
{
Scalar det;
umfpack_get_determinant(&det, 0, m_numeric, 0);
return det;
}
template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
Scalar* x_ptr = 0;
Matrix<Scalar,Dynamic,1> x_tmp;
if(x.innerStride()!=1)
{
x_tmp.resize(x.rows());
x_ptr = x_tmp.data();
}
mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data());
if(x.innerStride()!=1)
x.col(j) = x_tmp;