Newer
Older
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
namespace Eigen {
namespace internal {
/** \internal
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
{
typedef typename VectorV::RealScalar RealScalar;
using std::swap;
using std::abs;
Index mid;
Index n = row.size(); /* length of the vector */
Index first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = abs(row(mid));
for (Index j = first + 1; j <= last; j++) {
if ( abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
}// end namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \class IncompleteLUT
* \brief Incomplete LU factorization with dual-threshold strategy
*
* During the numerical factorization, two dropping rules are used :
* 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
* by the average magnitude of all the original elements in the current row.
* 2) After the elimination of the row, only the @p fill largest elements in
* the L part and the @p fill largest elements in the U part are kept
* (in addition to the diagonal element ). Note that @p fill is computed from
* the input parameter @p fillfactor which is used the ratio to control the fill_in
* relatively to the initial number of nonzero elements.
*
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
* and when @p fill=n/2 with @p droptol being different to zero.
*
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
*
* NOTE : The following implementation is derived from the ILUT implementation
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
* released under the terms of the GNU LGPL:
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
* http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
* alternatively, on GMANE:
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
*/
template <typename _Scalar, typename _StorageIndex = int>
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> >
protected:
typedef SparseSolverBase<IncompleteLUT> Base;
using Base::m_isInitialized;
public:
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType;
enum {
ColsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic
};
public:
IncompleteLUT()
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
{
eigen_assert(fillfactor != 0);
compute(mat);
}
Index rows() const { return m_lu.rows(); }
Index cols() const { return m_lu.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
return m_info;
}
template<typename MatrixType>
void analyzePattern(const MatrixType& amat);
template<typename MatrixType>
void factorize(const MatrixType& amat);
/**
* Compute an incomplete LU factorization with dual threshold on the matrix mat
* No pivoting is done in this version
*
**/
template<typename MatrixType>
{
analyzePattern(amat);
factorize(amat);
return *this;
}
void setDroptol(const RealScalar& droptol);
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);
x = m_lu.template triangularView<Upper>().solve(x);
x = m_P * x;
}
protected:
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
{
return row!=col;
}
};
protected:
FactorType m_lu;
RealScalar m_droptol;
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
ComputationInfo m_info;
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // Fill-reducing permutation
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // Inverse permutation
};
/**
* Set control parameter droptol
* \param droptol Drop any element whose magnitude is less than this tolerance
**/
template<typename Scalar, typename StorageIndex>
void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol)
{
this->m_droptol = droptol;
}
/**
* Set control parameter fillfactor
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
**/
template<typename Scalar, typename StorageIndex>
void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor)
void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat)
{
// Compute the Fill-reducing permutation
// Since ILUT does not perform any numerical pivoting,
// it is highly preferable to keep the diagonal through symmetric permutations.
#ifndef EIGEN_MPL2_ONLY
// To this end, let's symmetrize the pattern and perform AMD on it.
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose();
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1;
AMDOrdering<StorageIndex> ordering;
ordering(AtA,m_P);
m_Pinv = m_P.inverse(); // cache the inverse permutation
#else
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat;
COLAMDOrdering<StorageIndex> ordering;
ordering(mat1,m_Pinv);
m_P = m_Pinv.inverse();
#endif
m_analysisIsOk = true;
m_factorizationIsOk = false;
void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat)
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
Index n = amat.cols(); // Size of the matrix
m_lu.resize(n,n);
// Declare Working vectors and variables
Vector u(n) ; // real values of the row -- maximum size is n --
VectorI ju(n); // column position of the values in u -- maximum size is n
VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
// Apply the fill-reducing permutation
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
mat = amat.twistedBy(m_Pinv);
// Initialization
jr.fill(-1);
ju.fill(0);
u.fill(0);
// number of largest elements to keep in each row:
if (fill_in > n) fill_in = n;
// number of largest nonzero elements to keep in the L and the U part of the current row:
Index nnzL = fill_in/2;
Index nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
// global loop over the rows of the sparse matrix
for (Index ii = 0; ii < n; ii++)
{
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
Index sizel = 0; // number of nonzero elements in the lower part of the current row
RealScalar rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
for (; j_it; ++j_it)
{
Index k = j_it.index();
if (k < ii)
{
// copy the lower part
++sizel;
}
else if (k == ii)
{
u(ii) = j_it.value();
}
else
{
// copy the upper part
Index jpos = ii + sizeu;
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
++sizeu;
}
rownorm += numext::abs2(j_it.value());
}
// 2 - detect possible zero row
if(rownorm==0)
{
m_info = NumericalIssue;
return;
}
// Take the 2-norm of the current row as a relative tolerance
rownorm = sqrt(rownorm);
// 3 - eliminate the previous nonzero rows
Index jj = 0;
Index len = 0;
while (jj < sizel)
{
// In order to eliminate in the correct order,
// we must select first the smallest column index among ju(jj:sizel)
Index k;
Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
k += jj;
if (minrow != ju(jj))
{
// swap the two locations
Index j = ju(jj);
swap(ju(jj), ju(k));
jr(minrow) = convert_index<StorageIndex>(jj);
jr(j) = convert_index<StorageIndex>(k);
swap(u(jj), u(k));
}
// Reset this location
jr(minrow) = -1;
// Start elimination
typename FactorType::InnerIterator ki_it(m_lu, minrow);
while (ki_it && ki_it.index() < minrow) ++ki_it;
eigen_internal_assert(ki_it && ki_it.col()==minrow);
Scalar fact = u(jj) / ki_it.value();
// drop too small elements
if(abs(fact) <= m_droptol)
{
jj++;
continue;
}
// linear combination of the current row ii and the row minrow
++ki_it;
for (; ki_it; ++ki_it)
{
Scalar prod = fact * ki_it.value();
if (jpos == -1) // fill-in element
{
Index newpos;
if (j >= ii) // dealing with the upper part
{
newpos = ii + sizeu;
sizeu++;
eigen_internal_assert(sizeu<=n);
}
else // dealing with the lower part
{
newpos = sizel;
sizel++;
eigen_internal_assert(sizel<=ii);
}
}
else
u(jpos) -= prod;
}
// store the pivot element
u(len) = fact;
ju(len) = convert_index<StorageIndex>(minrow);
++len;
jj++;
} // end of the elimination on the row ii
// reset the upper part of the pointer jr to zero
for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
// 4 - partially sort and insert the elements in the m_lu matrix
// sort the L-part of the row
sizel = len;
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorI::SegmentReturnType jul(ju.segment(0, sizel));
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
for(Index k = 0; k < len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
// store the diagonal element
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
if (u(ii) == Scalar(0))
u(ii) = sqrt(m_droptol) * rownorm;
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
// sort the U-part of the row
// apply the dropping rule first
len = 0;
for(Index k = 1; k < sizeu; k++)
{
if(abs(u(ii+k)) > m_droptol * rownorm )
{
++len;
u(ii + len) = u(ii + k);
ju(ii + len) = ju(ii + k);
}
}
sizeu = len + 1; // +1 to take into account the diagonal element
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(Index k = ii + 1; k < ii + len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
m_lu.finalize();
m_lu.makeCompressed();
m_factorizationIsOk = true;
m_info = Success;
}
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H