
Fenrir – DRAFT v.05
Authentication and authorization in federated environments

Luca Fulchir
Udine, IT

luker@fenrirproject.org
https://www.fenrirproject.org

Abstract
TLS is the most widely used security protocol, but it has its limita-
tions and is rarely used to its full potential. It lacks authorization,
has no support for federation, relies on the Certificate Authorities
and on the complex X.509 format.

Today TLS is usually used just for encryption, while authenti-
cation, session identification, and other features are implemented
(again) at application level. This pushes too much complexity on
the final developers, and duplicates many features of the OSI stack.
Further complexity is pushed on the developers as TLS only pro-
vides reliable, datastream transfer.

This paper proposes a new protocol that includes the features
of TLS, plus fine-grained authorization, federation support, works
for both reliable and unreliable connections, has multistream con-
nection support, works with datagram or datastream transmission
modes, has multihoming, mobility and multicast support, is token-
based, to avoid the use and reuse of the main user password and
does not require clock synchronization.

The end result is a secure, efficient and extremely flexible solu-
tion that is also very simple to use from a end user perspective, and
it simplifies application and service development, by decoupling
the management of the security from the application itself.

Keywords Protocols, Encryption, Authentication, Authorization,
Federation, Fenrir

Introduction
TLS is a widely used and tested protocol, but few projects use
its full potential, as session resumption, authentication after the
connection and other features have been introduced after the initial
standard. Applications do not want the added complexity of having
to manage other features – not even authentication methods other
than the user/password pair.

TLS is also limited as it does not include all features one can
need (like authorization) and some details such as session identi-
fication are not always exposed. This required the development of
higher level protocols such as OAuth.

Copyright 2015 Luca Fulchir

Using TLS requires a bytestream reliable connection (TCP),
which is easy to spoof. DTLS was thus needed for datagram un-
reliable connection. Since the two do not support any multistream
capabilities, an application might have to handle different connec-
tions to the same servers (e.g.: HTTP pipelining). And all of this
still excludes use cases that like reliable datagram delivery or mul-
ticast delivery. Multicast extensions have been proposed, but their
efficacy is questionable as the same keys are shared among all par-
ticipants.

The OSI protocol stack identifies the transport, session and pre-
sentation layer before the application layer, and each layer should
be independent. Today’s protocols however need to check informa-
tion between various layers for example to assure that the encrypted
data comes from the right source, or that the user session is tied to a
specific decryption middleware and/or layer 4 connection. This in-
troduces complexity and duplication of features, as things like ses-
sion identification are done multiple times, each time with different
security properties: for example in a typical web session we have
different session identification at the TCP, TLS, HTTP(cookie) and
OAuth level, and each of these must be tightly tied with one an-
other, or security problems can arise. This breaks the independent-
layer OSI model, and adds complexity and attack surface. Part of
this complexity is also pushed upwards in the stack, and the appli-
cation ends up having to manage it.

In a typical HTTP application stack authentication can be done
at multiple levels (e.g.: TLS, HTTP, OAuth), but none of these
support federation, and none of these include explicit support for
multiple levels of authorizations.

Finally, The X.509 certificate model brings a lot of unneeded
complexity, especially if the only concern is to secure a connection
between the client and the server. This complexity has been ex-
ploited multiple times, and many certificate authorities have been
shown to be weaker than expected.

To solve all these problems and introduce new features and
flexibility, I designed the Fenrir protocol. It can run right on top
of the IP protocol, but includes support for UDP tunnelling for an
easier initial deployment, to avoid firewall problems.

The goals of this protocol are multiple: the first is the simplifi-
cation of the OSI stack, putting together the 4th and 5th layer with
encryption while trying to be as independent as possible from the
3rd layer. This way security properties can be easily checked in a
single place. Secondly, we need to be flexible enough for any use,
so ordered, unordered, reliable, unreliable connection, unicast and
multicast, multiplexed, authenticated or anonymous, encrypted and
cleartext (but always HMAC-like-authenticated) transports must be
supported. A third goal is to have flexible, fine-grained control on
authentication and authorization with federation support.

Future work will include secure proxy support, where the proxy
works only with encrypted data, and is usable in a CDN (Content



Delivery Network). One of the problems introduced by HTTPS is
that the content is no longer cacheable. To bypass this limitations
CDN networks like cloudfare ask for the keys, or create special
software that transmits them the connection key. This however
changes the trust model, as the certificate does not assign trust to
only the server anymore, but also to a hidden third entity which has
complete control on the connection.

A final future work will be client-to-client communication, with
a STUN-LIKE protocol that will enable direct client-to-client com-
munication.

The end result will be a simpler application security model,
were we won’t have to test different interactions of different proto-
cols. The interface to the final user will be simpler, lowering appli-
cation complexity as there will be only one middle-ware to interact
with, and we will have an authentication and authorization protocol
that manages federation without the complications of a framework
like OAuth.

Terminology
As a short introduction we need to define some terminology:

• Authentication: The process of determining if a user is really
who he says he is

• Authorization: The privileges associated with the authenti-
cated user

• Authorization Lattice: a complete lattice – an ordered way of
representing hierarchical authorizations. See pg. 3

The Federated model
To promote a standard and interoperable login method we use a
terminology similar to the kerberos federation:

• Application: e.g.: the mail client, or browser...
• Client Manager: An application running on the end user device

that manages all the tokens, authentications and authorizations
• Service: the server application that the application wants to

access.
• Authentication Server: The server that manages login data,

authentication and authorization for a specific domain

The threat model
The goal is to grant confidentiality and integrity of the data ex-
changed between the Client Manager, the Authentication Server
and the Service, and of the data between the Application and the
Service. The attacker has complete control on the data transmitted
or received. There is a trusted party (DNSSEC) that can be con-
tacted in a secure manner.

Being in a federated environment, both the Client Manager
and the service will assume that their Authentication Server is not
malicious, at least for the first connection.

The client only has to trust the Authentication Server for its
own domain, but the Authentication Server will not be able to
impersonate the user on services where the user has already set
up an account.

For everything else, the attacker is the network.

The local threats
Our environment looks a lot like Kerberos, and in fact the distinc-
tion between Service, Authentication Server and Client Manager
comes from there. As in Kerberos, the end user will need to run an
application that manages all tokens and authentications.

The Client Manager will be the target of a lot of attacks, just
like any local password manager would be. This paper will not

focus on those attacks as they are implementation and environment
dependent. We will only focus on the protocol defence.

High-level overview
Fenrir is a federated protocol, so each domain will have its own
Authentication Server (a single A.S. can support multiple do-
mains, too), and each user is identified by its username and domain.
Thanks to the integrated federation support, each user won’t need
to create a different user for each domain or service that they want
to access.

This is a token-based authentication protocol, which means that
the user, its authentication and its authorization are represented by
a token, which can be thought of as a 256 bit string of random
content. This will lower the amount of times a password is needed,
making it easier to use from a end-user point of view, and also
more secure. The protocol will not require clock synchronizations
between any party.

A Client Manager will run on each user device. This will man-
age all the tokens for a user. Each Client Manager can be identified
by the Authentication Server, so that this will be able to distinguish
which device has access to which services. This way each device
can be easily and securely deactivated if lost or stolen.

The Client Manager will only need the user login password
once, at setup time, ad then must forget it and switch to token
authentication. This will prevent password reuse and loss. To make
things clearer, the Client Manager should use the user password
only once in all its lifetime (except for configuration resets).

The Authentication Server will be the only one that will have
access to the users login data, and once a user has authenticated,
it will inform the Service that a new Client has connected, without
revealing information on the key exchange or authentication data.
This will further divide the Service from the user authentication.

When an application wants to connect to a service, first the
Client Manager needs to contact the Services’ Authentication
Server. Once the authentication is verified, the Authentication
Server will send to the Service the user information. The Service
will generate a session key, xor it with a secret shared between
the user and the service, and send it to the Authentication Server,
which will rely it to the Client Manager. The information relied will
include ip addresses, encryption keys, and connection identifiers.
The Client Manager can now give the encryption key, ip and con-
nection id to the application. As for the Authentication Server and
its Services, this divides the end-user authentication security from
the end-user application security.

Having the Authentication Server distribute the ip address of
the Services will help in managing load balancing, or geographic
traffic redirection.

Each Service will be identified by a domain name and a 16-
byte service identifier. This means that each service can be udp-
tunnelled to any port, aiding setups of multiple different services in
a single machine (virtual hosting).

Each Service will also have an Authorization Lattice, which
represents an order of the possible authorizations. This small lattice
will be transferred to the authentication server and to the Client
Manager, so that a token can be tied to a particular authorization,
and so that the Client Manager can further limit the scope of the
token when authorizing applications. This means that users won’t
have to rely on the applications self-limiting themselves, but the
protocol will actually enforce the authorization limitation.

The end-user view
The aim is to have a single, secure application that manages all
authentications and authorizations, and to hide all the details from
the user, while only asking for confirmations.



The user will register its username with its Client Manager, and
then for each service we need to ask the user 2 usernames:

• authentication username: One of the usernames registered in
the Client Manager . We need to ask this because the user
could have multiple accounts registered on its Client Manager,
and because providing a list of possible usernames to each
application might be considered an information leak.

• service username: The account to use on the service. The user
could have multiple accounts for each service and we need to
know which one he wants to use.

The two accounts can be the same, and should default to
“anonymous@given tld”. Using two accounts might seem coun-
terintuitive, but lets us cover all authentication scenarios:

• anonymous both usernames must be set to “anonymous@given tld”.
• federated auth. username is in a different domain than the ser-

vice username, which is in the same domain of the service. This
allows multiple accounts usage with the same auth.username

• local both usernames are the same, and in the same domain of
the service.

Everything else will be automatic and requires only a user
confirmation.

The Authorization Lattice
The name should already give an idea on what this is: a connected
ordered graph where we have a bottom element, a top element,
where the bottom element represent no privileges, and the top
element represents all privileges.

Bottom

Read

Modify Add

Write

Top

Account info

Figure 1. Example of a complete lattice of privileges

We said before that the user will have multiple tokens, one for
each service where he wants to identify himself. Each token will
be tied to a specific element in the Authorization Lattice, and this
authorization lattice will be synchronized between the service, the
authentication server and the Client Manager.

Having the lattice at the Authorization Server means that we
will be able to decide the maximum permissions of each user
device, for each service, both in our domain and in other domains.

Having the lattice in the Client Manager means that the Client
manager itself is able to further limit each application permissions.

The end result is the finest of controls on the authorization, in a
secure way: if the user device is compromised or lost, but had only
read access to an account, that will be the extent of the loss.

Since each application has different needs, each service will
have its own Authorization Lattice. To avoid excessive growth of
the lattice, and to avoid having to store too much data, each lattice

will be limited to 64 nodes, and each node will be limited to a 25-
character name: this will put the maximum size of an uncompressed
lattice around 2Kbytes (one or 2 packets maximum).

The Federation
The idea is to divide everything in administrative domains.

The advantages of this approach are two: we can easily stan-
dardize on a single cross-domain login algorithm, and we divide
completely the services and the applications from the login data.

Since services and applications are not always checked and
tested as much as security protocol implementations, this should
increase the overall application security.

The service now does not need any access to the user password
database, so the compromise of a service does not mean that we
have to force all users to change their authentication data.

Forcing an Authentication Server might still be possible, but the
overall attack surface is much lower than the whole service. More-
over the compromise of an Authentication Server should not nec-
essarily mean that the services databases needs to be checked and
reset, too. Such an attack would also have less impact as the Au-
thentication Server itself can not impersonate its users into services
where the user has logged in at least once. This is possible thanks
to shared secrets that are setup between the Client Manager and
the service, and between the Client Manager and the authentication
server.

It should be noted that although the protocol is built with fed-
eration in mind, nothing stops developers to force an older client-
server architecture (by putting together auth.server and service) or
even a distributed architecture.

Services
Historically, each service was identified by the port on which its
protocol run, so TCP port 80 is reserved for HTTP, 443 for HTTPS
and so on.

This means that the real identifier of a service is the IP:protocol:ports
tuple. This is limiting, as it can require a different IP for every ser-
vice that runs on the same port as another (or for multiple instances
of the same service), and we need to give administrative privileges
to at least a part of those applications.

This was necessary in the past because the domain lookup
did not include the service lookup: the DNS queries return an
IP address, but you want to connect to a service, not just to the
machine, so you need a service identifier. This was the protocol:port
pair.

To avoid the firewall and port limitations today almost every
application is designed to run on top of HTTP, making everything
inefficient and requiring a lot of middleware software.

To solve all these problems, in Fenrir we redesign the identifi-
cation of a service.

First of all, the domain lookup must include some information
on where the authentication server is running. This is done by
using an external directory service (DNSSEC). A lookup for the
domain also returns enough information to be able to connect to
the Authentication Server for that domain (public keys, udp port, ip
addresses..see pg 5). Once the client connects to the Authentication
Server it can ask for a specific service, and the answer can contain
information such as the IP and UDP port.

This means that we can have multiple Authentication Servers
and services on the same machine, on whichever UDP port we
want. Even when not using UDP tunnelling, each A.S. will be
identified by its key-id. To avoid conflicting ID we could design
a listen syscall to succeed only if an additional password matches
for the key-id we want to use, or we could more simply forward
the packets to all applications that use that key-id: if they are not



the intended recipient, they will perceive it as garbage (due to the
signatures) and will drop it.

As of today a typical linux distribution has a file (/etc/services)
that tracks the tcp and udp ports for each service, for a total of
almost 5900 protocols, and the total of the TCP and UDP tracked
ports is more than 11000.

Since the applications that will make use of Fenrir are now com-
pletely UDP-port independent, and will not need to reserve other
ports, in Fenrir we will track all protocols in a new public database,
and we will simply assign one 16-byte ID for each protocol. The
Service will then be identified by its protocol-id and its domain.

The advantages of this approach are that we can run as many
services, of as many domains as we want, without any risk of
collision, as the IP address is not an identifier anymore. We do not
need to run services on any specific port, so any free UDP port is
fine, since the UDP port of a service is given to the client by the
Authentication Server.

Trust model
Fenrir breaks away from the X.509 format and from the certificate
authority model.

The X.509 certificate is difficult to parse, and the current parsers
in the most common TLS implementations range from 10k to 35k
lines of code. It is unsurprising that many bugs have been found
and exploited in the handling of such format.

X.509 certificates include a validity of the certificate, so that a
certificate can not be used before or after a certain date. While this
seems obvious, it creates two problems: the first is clock synchro-
nization, which is almost always in cleartext and unreliable on the
internet, and the second is certificate revocation. This was initially
thought to be resolved with CRL (Certificate Revocation Lists), but
these lists were almost never updated on the clients. A new proto-
col (OCSP) was thus introduced to check in real time if a certificate
was still valid, eliminating the advantages of offline checks on the
validity of the certificate.

The certificate authority model is also questionable: multiple
companies have been found to have issued certificates that should
not have been given, even for high-ranking domains like google’s.

These problems put a very bad light on this trust model, but
what other model can we use that will grant freshness and validity
of the public keys? In Fenrir we require a generic directory service
to get the public keys, so that future technologies might supplement
what is lacking today. The current choice is DNSSEC, which was
designed exactly for this problem, but on the scope of DNS queries
instead of keys.

By embedding all our data as a Z85-encoded binary in a TXT
record, we can have both freshness of the data and control of our
keys.

Again, Fenrir only uses the DNSSEC system due to its widespread
usage, but experiments with other trust models and protocols are
encouraged and easily pluggable in the code.

The main DNSSEC record, fenrir.domain.tld will hold the
public key and connection information for the Authentication
Server. There will be an additional record for every service,
id. fenrir.domain.tld that will hold the public key of the service.
This secondary public key will actually be needed only the first
time a client connects to an unknown service, to provide additional
security against a malicious or hacked authentication server.

The transport details
At the lower level, the protocol is designed to run on top of IP, but
supports UDP as a lightweight tunnel, to bypass firewall problems.

0 1 2 3

Connection id

Encryption header

}
Cleartext

Padding Eventual Padding(0-255)

Stream id Data Length

Flags Stream Counter

Stream
Header

{
User Data

Stream
Data

{


Encrypted

HMAC

ECC

The header is self-explanatory, but is also very flexible, and only
the full version is reported here.

The handshake header has the same structure, but is unen-
crypted, and there is no HMAC field.

Starting at the beginning we have:

• Connection id: an identifier for the connection. To avoid need-
ing to synchronize the used connection ids between communi-
cating parties, each party will decide for a connection id and
will communicate it in the handshake phase. So while trans-
mitting each party will use the connection id the other client
requested. This will also mean that a single client can not have
more than 232 connections, still, that is considered enough for a
single device, as just keeping track of all the connections would
require hundreds of gigabytes of memory.

• Crypto header: This will usually be only a counter, or other
info to let the receiving party check and decrypt the packet
immediately. The actual size is dependent on the negotiated
algorithms.

• Padding: Padding at the beginning (0-255 bytes), random in
length and content, so that it will be more difficult to infer
anything just by the packet length (think CRIME/BREACH).

• Stream: composed of a Header and the User Data, this part
can be repeated in the packet, and provides support for multiple
streams in a single connection.

Stream Id: a randomly-assigned stream id. randomness is
not necessary, but should provide less window for known-
plaintext attacks.

Data length: simple counter of the user data transmitted in
this stream. Stream header length not included.

Flags: (2 bits) used to signal beginning/end of user data
fragment

Stream Counter: A total of 30 bits to support higher
throughput on high latency networks. Stream length not
included.

• HMAC: Hash-based Message Authentication Code, or general
signature to confirm the authenticity and integrity of all the
previous data. Actual size depends on the agreed algorithms
(can be zero if the function is already provided by AEAD
cipher).

• ECC: Error Correcting Code, to avoid retransmissions for ex-
ceptional errors. Algorithm dependent on handshake agree-
ment.

The flags in each stream introduce support for managing the be-
ginning and ending of the user message. This way we support both
datagram-style transmission, including fragmentation and reassem-
bly, and bytestream, TCP-like connections.



The whole packet is be encrypted following the Encrypt-then-
MAC mode, or AEAD.

Of all the connection ids, the IDs 0, 1 and 2 are reserved. ID 0
will be used during connection setup, ID 1 is reserved for secure
proxy, and 2 for multicast.

The header looks a bit like the SCTP one. The main difference
with SCTP is that we do not have different headers for different
stream types. For example the control stream, which will manage
all the connection information is just a normal stream, with a
random identifier, created during the connection setup phase.

The padding
Padding (0-255 bytes) is put at the beginning for different reasons:
we put more randomness in the packet structure and we provide
more initial entropy in the data, thus making known-plaintext more
difficult.

The CRIME, BREACH and recent BICYCLE attacks against
TLS were based on the fact that very little changes between multi-
ple HTTPS requests. By randomizing the packet length, even by lit-
tle, and the content, Fenrir should prove to be more resistant to such
attacks, even with protocols with long, static headers, like HTTP.

It should be noted, however, that random padding can increase
the chance of misaligned data. While this is not a big problem
for newer x86 cpus, it might become one in high performance
scenarios, so the alignment (1,2,4,8 bytes) can be specified in the
handshake.

Multicast
Fenrir includes support for multicast communications. All multi-
cast streams will have a unicast stream associated with them. This
will provide an easy way to synchronize on things like key renewal
or to transmit error recovery data.

By using the RaptorQ algorithm in both the unicast and multi-
cast transmissions we will be able to provide a reliable multicast
delivery. RaptorQ support is provided trough a separate library,
libRaptorQ[1], developed for this project.

Finally, multicast transmissions can not use the usual HMAC, as
this would be trivially forgeable by any other party in the multicast
group. To avoid a MITM by an attacker in our multicast group we
can only use a private/public scheme to sign each packet. While
RSA might be slow, elliptic curve algorithms are much quicker and
should not pose a performance problem.

Since each connection id is decided by the receiving party, and
we do not want to synchronize connection ids between computers
on the network, we have reserved the connection ID ”2” as the
identifier for all multicast packets. The next field will be a 128bit
sha3 hash of the public key used to sign the data, which will serve
as an identifier of the multicast transmission. In the future Fenrir
might move to shorter hashes, as long as the clashes are handled by
a linked list not to lose data.

Error Recovery
There can be up to two levels of error recovery. The first is the ECC
field, which aims at correcting bitflips and general transmission
errors in the packet.

While the HMAC gives us assurance on the authenticity of the
data received, just a bitflip during the network transmission can
cause the whole packet to be dropped. An error correcting code can
be used to reduce retransmissions.

The second level of error recovery is implemented through
the RaptorQ algorithm and libRaptorQ[1] library. By using this
forward error correcting code we can recover any lost packet,
as long as we have a repair packet for every original packet we
lost. This will further reduce retransmissions and reliance on the
ACK mechanism. While the first level of Eror correcting code is

appended to the packet, this second level is handled through in-
band streams. This way we can protect only the needed streams,
and not the unreliable ones.

Both error recovery mechanisms are negotiated for every con-
nection, as they will increase the computation power needed, and
new algorithms might come out in the future.

Connection Setup
When a client wants to connect to a service, it needs to know 2
things: the service id and the service domain. The Client Manager
will then ask which user should be used, and will now handle the
authentication phase.

We assume that the Client manager already has a connection
with the Authentication Server of the domain of the authentication
username. The Client Manager now has to contact the Authentica-
tion Server of the service. To know where that is, Fenrir uses an
external directory service.

For example, using the existing DNSSEC infrastructure, if the
client wants to connect to “sub.example.com”, it makes a DNSSEC
TXT query for “ fenrir.sub.example.com”. The answer will be
a z85 (base85) encoded binary including a public key and the
ip address(es) of the Authentication server responsible for the
“sub.example.com” domain. A single z85 string was chosen to
keep the encoded binary as short as possible, and to avoid asking
multiple records, which would have meant much bigger response
due to multiple DNSSEC signatures. Z85 is a variant of base85
where the encoded string is parsing-safe, as there are no quotes,
double quotes or backslashes in the generated output.

With these information, the Client Manager can contact the
Authentication Server.

Fenrir supports 3 different Handshakes:

• Full-Security: TLS-like handshake, 3 Round Trips.
• Stateful Exchange: Only 2 RTS, but requires to store a state

from the beginning.
• Directory-Synchronized: Only 1 RT, but requires the Authen-

tication Server and the public key directory service to constantly
synchronize on the public key to use.

The handshakes have been named in order of robustness against
(D)DoS attacks.

The connection id 0 is reserved for the handshakes. The packet
is not encrypted as there are no shared secrets yet. The stream id is
chosen by the sender and is random, but the server will not have to
keep track of it.
Each handshake packet will contain only one stream, which will
contain a key id, so the server knows with which one of its keys it
needs to check the signatures, and an identifier used to distinguish
the various phases of the various handshakes.

On the final RT of the handshake the 2 parties exchange con-
nection ids and authorization token. The token is not sent as clear-
text. It is XORed with a shared secret between the Auth.Srv and the
Client Manager. After answering, the Authentication Server and the
Client Manager will XOR their session keys with the shared secret.
By doing this we prevent MITM of the connection even in the case
of a compromised directory service.

The above mentioned shared secret is generated by a second
public key exchange during the very first login of the user on that
device.

Full security
The most secure one uses syncookies, requires the least amount of
state to be kept in memory, and can be explained as follows:



• RT 1: nonce exchange, the client sends the supported algo-
rithms(by preference), the server reply contains the selected one
plus a timestamp, supported authentication algorithms, and sig-
nature of the request and reply.

• RT 2: nonce exchange, the client gives back the previous signa-
ture, an ephemeral key. The server replies with the ephemeral
public key and then signs everything, including the client mes-
sage. A state is created with only the key generated from the
public key exchange.

• RT 3: The client authenticates, sends connection initialization
data, and the server answers with a positive/negative message
and connection data.

Overall it is very similar to the TLS exchange.

Stateful Exchange
This is a quicker version of the TLS handshake, were we eliminate
the syncookie, and only renew the ephemeral public key every
couple of minutes. This means that all the connections in this
timeframe will be derived from the same ephemeral key.

The advantage is that we avoid one RT and we have less CPU
overhead due to less ephemeral key regeneration.

The disadvantage is a slightly bigger concern towards DoSes,
since we need to keep some state between the 1st and 2nd RT.

The issue of slower ephemeral key regeneration should not be
a big concern, as long as the time between regeneration is not too
high.

A similar key exchange to this is found in Google’s QUIC[3]
protocol.

• RT1: client hello, client supported algorithms, server answers
with public key, chosen algorithms, supported authentication
algorithms.

• RT2: client answers with key exchange data and authentication
data, server answers with handshake completion confirmation
and connection data.

Directory-Synchronized
Taken straight from minimaLT[2], it involves strict collaboration
with the directory services used to distribute the public keys.

The idea is to ditch the long term public key, and switch com-
pletely to using just ephemeral public keys.

To do this, however, we need to synchronize the distribution of
the ephemeral public keys to be sure that everyone agrees on which
public key to use at any time.

The ephemeral public key will be distributed directly in place
of the long term public key, and the Authentication Server and
the Directory Service will synchronize on when to publish the
new public keys. Since we have a key-identifier, the Authentication
server can support both the new and old published ephemeral keys
for a short time, to avoid inconsistencies in clock synchronization.

The advantages are a quick connection with only one RT.
The disadvantage is a much bigger risk of DoS attacks.
It should be noted that the client must now be able to generate

a shared key only from the data published on the directory service.
Also, this way there is no algorithm agreement, so only the server-
published mechanism can work.

0-RT protocols do not provide any assurance on the sender
IP, and therefore create an extremely easy amplification attack.
Forcing at least one RT forces the attacker to at least intercept all
packets for the target network. But if the attacker already has this
ability, spoofing already provides an easier and congestion-control-
free way of DoSing the target, so targeting this protocol becomes
much less appealing.

• RT1: exchange of authentication and key-exchange data.

The Federated Authentication
Once a secure connection has been established between the Client
Manager and the Authentication Server, and during authentication,
the client tells the Authentication Server which service on which
domain it wants to use.

If the client wants to access a service in its own domain, then it
only needs to connect to its own Authentication Server.

When it wants to connect to a service in an other domain, it
will need one connection to its own Authentication Server and one
to the other domain’s Authentication Server. Once the second Au-
thentication Server has confirmed its identity with the Authentica-
tion Server of the client’s domain, it will let the Client access its
Services.

To confirm the identity of the user, without revealing any data
that can be used to impersonate the user, we use tokens. A token is
a random, 256bit string.

In our example, the user “user@example.com” connects to the
service “www.example2.org”.

The Client Manager connects to the Authentication Server for
“example.com” and authenticates himself as “user@example.com”.
This is done as soon as the Client manager is started, and the con-
nection is persistent, and will be used for all the queries for that
user/device pair.

As soon as an application wants to connect to “www.example2.com”,
this is what happens:

• The application tells to its Client Manager it wants to connect
to “www.example2.com”, service “www”

• If the Client Manager does not have a token for that Service, it
asks its Authentication Server for a new token.

• The Client Manager now connects to the Authentication Server
for “www.example2.com”, and authenticates.

• The Authentication Server for “www.example2.com” checks
the token with the “example.com” Authentication Server

• The Authentication Server for “www.example2.com” tells its
“www” service that a new user has connected.

• The “www” Service gives its Authentication Service a connec-
tion id, session key xored with a secret shared with the client.

• The Authentication Server for “www.example2.com” gives
back the encryption key and connection data to the Client Man-
ager.

• The Client Manager gives the application the connection data
and keys.

Note that the applications now does not have to do any user
authentication, nor does it have to know how to do handshakes or
handle tokens, and the same is true for the services.

Thanks to a shared secret between the client and the service,
even a compromised authentication service will not be useful in im-
personating the user in services where the user already registered,
although new registrations will always be possible.

During the very first connection a shared secret might not be
available yet. The client will therefore generate a public key, and
generate a shared key with the public key of the service, found
in the directory service. Then during authentication the client will
send the public key to the service.



The delays
This protocol seems to include a lot of round-trip checks, especially
if we consider the Full-Security handshake when none of the parties
involved have an active connection.

The worst case scenario is a login in an other domain without
any active connection, and has a total of:
3RTs for Client-Manager to its Authentication Server connection;
1 RT for a new token; 3 RT for Client Manager to the other
Authentication Server connection; 3 RTs for intra-Authentication
Server connection which includes the token check, and one RT to
tell the Service about the new client.

That is a total of 11 RTs, and sounds a lot, but in reality the
initial 3 RTs for Client Manager to its Authentication Server con-
nection are done only once, even before we want to connect to any
service, so they should not actually count as delay, and the total
goes down to 8 RTs. The RTs between Authentication Servers are
usually on networks with less delay between them. The Authentica-
tion Server and its Services are usually in the same network, too, so
the RT between them are negligible, and the connection between
them should be persistent. 7 RT. The client might already have a
token it can use for that service, so an other RT can be discarded.
6RT. We can further reduce the RT count by using the other two
handshakes.

The best-case scenario is when a Client Manager has already
authenticated to its Authentication server and wants to connect to
one of its services, and that is just one RT, plus an other (negligible)
between the Authentication Server and the Service.

The average case should be when a Client Manager is already
connected to its Authentication Server, already has the needed
token, and wants to connect to the Service of an other domain.
This includes one handshake to the other Authentication Server (1-
3RTs), which will then check the token and inform its Service (1-3
RTs), for a total of 2-6 RTs depending on the chosen handshakes.

All in all, the delay should not be too high, and the advantages
(no multiple password to remember, fine-grained authorization,
separation between applications and security...) should outweigh
the possible delay.

Future Work
Secure proxy
By “Secure proxy” we mean a server that can cache certain parts
of connection contents, even if they are encrypted, and then serve
them to clients that request this.

The “secure” part of the proxy comes from the fact that the
proxy handles encrypted data for which it does not have the key.

The services that want this feature will have to explicitly use the
feature, as each resource needs to be identified.

The proxy can be an explicit proxy set inside the Client Man-
ager, or a semi-transparent proxy.

To support the semi-transparent proxy operation, the proxy will
need to be between the device and the service, and the client will
need to send part of the request in clear-text.

To do all of this we need to reserve the number 1 connection id.

OTP Tokens
Managing tokens as Lamport’s OTP (hashed OTP) would grant
us the ability to instantly detect unauthorized usage of a token or
shared secret.

The only problem to applying this to shared secrets is that the
shared secret between the services and the client manager must be
shared between the client managers, so the otp feature would not
be useful.

Sub protocols
The multistream feature of Fenrir can lead to the design of multiple
sub-protocols.

Implementing (for example) file transfer once for everyone
would be easier for developers, who could automatically use ad-
vanced features of Fenrir without even be aware of them. Au-
dio/video, chats and other use cases make this particular interesting.

Client to Client
Fenrir won’t be complete until the possibility of client-to-client
direct communication will be included.

Such a feature is not extremely difficult per se, as we would
only have to implement a way to publicly distinguish each device
on which the user is logged in.

This however has other issues like privacy and spam abuse
which need to be addressed in more detail before an actual im-
plementation is made.

Anonymous connections
That is, authenticated connections in which the user is verified, but
its username is not leaked to other Authentication Servers.

While it could be implemented through temporary usernames,
it would give too much trust to the Authentication Server. This
feature should be limited to pre-shared-secret generation between
the service and the client, to avoid leakages.

The ramifications of this aproach have not been fully studied
yet.

References
[1] libraptorq: Lgpl3 forward error correction library.

https://www.fenrirproject.org/Luker/libRaptorQ.
[2] W. Michael, Petullo Xu, Zhang Jon, A. Solworth, Daniel J. Bernstein,

and Tanja Lange. Minimalt: Minimal-latency networking through better
security.

[3] Jim Roskind. Quic: Multiplexed stream transport over udp.
https://docs.google.com/document/d/1RNHkx VvKWyWg6Lr8SZ-
saqsQx7rFV-ev2jRFUoVD34/edit, 2013.


